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ScienceDirect
For decades, high-resolution structural studies of biological

macromolecules with masses of <200 kDa by cryo-EM single-

particle analysis were considered infeasible. It was not until

several years after the advent of direct detectors that the

overlooked potential of cryo-EM for studying small complexes

was first realized. Subsequent advances in sample preparation,

imaging, and data processing algorithms have improved our

ability to visualize small biological targets. In the past two years

alone, nearly two hundred high-resolution structures have been

determined of small (<200 kDa) macromolecules, the smallest

being approximately 39 kDa in molecular weight. Here we

summarize some salient lessons and strategies for cryo-EM

studies of small biological complexes, and also consider future

prospects for routine structure determination.
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Introduction
The advent of improved imaging technologies and data

processing software in cryo-electron microscopy (cryo-

EM) single-particle analysis (SPA) has enabled high-

resolution structure determination of biological macro-

molecules in solution, permitting the direct visualization

of complexes that were previously incompatible with

other structural techniques due to size, conformational

heterogeneity, and/or compositional variability [1,2].

While high-resolution SPA reconstructions of diverse

targets are now increasingly routine, the sensitivity of

biological complexes to ionizing radiation from the elec-

tron beam places a significant constraint on the physical

capabilities of cryo-EM. The trade-off between maximiz-

ing the signal-to-noise ratio (SNR) of cryo-EM images

while minimizing the extent of radiation damage is of
www.sciencedirect.com 
non-trivial importance and arguably the crux of future

improvements in the field. This compromise has particu-

larly impacted the study of specimens of low molecular

mass, which have fewer scattering atoms to contribute to

signal, and have consequently largely eluded cryo-EM

SPA structure determination due to their poor SNR in

vitreous ice. For this reason, it was widely believed for

many years that cryo-EM was not a viable technique for

structure determination of biological samples with molec-

ular weights below 200 kilodaltons (kDa) [3]. However, in

2016 Merk et al. [4] were the first to break ground in this

arena by presenting cryo-EM structures of the �140 kDa

lactase dehydrogenase and the �93 kDa isocitrate dehy-

drogenase to 2.8 Å and 3.8 Å resolutions, respectively.

The size limits of cryo-EM SPA have since been contin-

uously challenged, and several high-resolution (i.e. better

than 4 Å resolution) reconstructions of progressively smal-

ler biological specimens have been reported in recent

years (Figure 1). An unprecedented number of <200 kDa

targets were determined in the past two years alone; a list

of all such structures, with relevant details regarding

sample preparation and imaging conditions, is summa-

rized in Table S1. Among these is the 3.7 Å structure of

the �40 kDa S-adenosylmethionine-IV riboswitch RNA

[5�], which is the smallest target resolved without a

molecular scaffold to date, and on the cusp of the pre-

dicted 38 kDa limit of SPA [6]. Though these structures

currently represent a minority (approximately <1%) of all

SPA reconstructions deposited to the Electron Micros-

copy Data Bank (EMDB), this proportion is certain to

change with further developments in sample preparation,

data collection, and image processing algorithms. Here,

we review recent achievements in pushing the lower size

limits of cryo-EM SPA and emphasize special consider-

ations for resolving targets in this size range, as well as

insights into protein structure/function and drug discov-

ery. We also discuss further areas for improvement and

future prospects for high-resolution structure determina-

tion of small complexes.

Methodologies and strategies for imaging
small complexes
Considerations for the frozen specimen on the grid

Predictably, maximizing contrast and SNR is of para-

mount importance when imaging small biological targets.

To do so, it is critical to prepare and image cryo-EM

specimen grids containing non-overlapping macromole-

cules embedded in the thinnest possible layer of vitrified

ice. Ideally, this would be ice that is only slightly thicker

than the longest dimension of the targeted molecule.
Current Opinion in Structural Biology 2020, 64:9–16
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Figure 1

EMDB entries: Size vs. Resolution
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High-resolution sub-200 kDa structures determined by cryo-EM single-particle analysis. Top: Electron Microscopy Data Bank (EMDB) entries of

complexes amassing below 200 kDa and resolved to better than 4 Å resolution, plotted by molecular weight and resolution. Data points are up to

date to the point of this publication. Bottom: Cryo-EM density is shown for selected entries (outlined in black in the plot above) along with the

corresponding EMDB identifier, molecule name, molecular mass, and reported resolution. Further details for each structure are listed in Table S1.
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Benchmarking experiments using the �150 kDa enzyme

aldolase (�10 nm) revealed that data collection efficiency

and resolution are maximized when targeting over ice that

is between 10�20 nm in thickness [7], such that the

particles comprise a single monolayer within the vitreous

ice. The use of gold grids may yield advantages to this

end, as specimens frozen on gold substrates are typically

thinner, and experience less beam-induced motion

during exposures compared to those frozen on carbon

[7,8��,9]. Ice thickness should be quantitatively assessed

throughout data collection to ensure continuous imaging

over the thinnest possible ice. Absolute thickness mea-

surements can be performed using an energy filter [10] or

through aperture limited scattering [8��], either of which

can be incorporated into an automated data collection

pipeline. Additionally, assessment of the Fourier trans-

form of the acquired images is a particularly useful metric

for ice thickness, as images containing optimally thin ice

typically exhibit Thon rings that extend to high resolu-

tion, while the presence of a ring of increased intensities

near 3.9 Å (often referred to as a ‘water ring’) is charac-

teristic of ice that is thicker than �50 nm [8��], which is

substantially greater than the diameter of most small

specimens. As such, performing on-the-fly estimation

of the contrast transfer function (CTF) as part of an

automated image acquisition scheme is particularly ben-

eficial for maximizing the efficiency and quality of data

collection.

While the ideal specimen grid is intuitive in theory, it is

oftentimes not so straightforward in practice. We have

observed that the smaller the complex, the thinner and

therefore more fragile the ideal ice layer. Maintaining a

high particle density in the grid holes seems to be

necessary for supporting very thin layers of ice-embedded

molecules, with the additional benefit of increasing the

accuracy of subsequent image processing steps that uti-

lize neighboring particles to facilitate alignment, such as

the correction of beam-induced motion, local CTF esti-

mation, and particle polishing [7,11–13]. Conversely, it is

also important to ensure that the ice is not too thin. A

detailed tomographic study of various single-particle

specimen grids conducted by Noble et al. [14��] demon-

strated that biological macromolecules commonly adsorb

to and are damaged by the hydrophobic air-water inter-

face, resulting in the adoption of a preferred orientation or

even partial to complete sample denaturation [15–17]. As

exposure to both air-water interfaces likely increases in

thinner ice, the specimen may become more susceptible

to these detrimental effects. Recently, grids overlaid with

monolayer graphene were used to obtain a 2.6 Å structure

of the smallest protein complex resolved to date, the �52

kDa streptavidin [18��]. Graphene and graphene oxide

monolayer supports [19–21] sequester macromolecules

away from the air-water interface in addition to increasing

particle density in the grid holes and are nearly electron-

transparent, thereby enabling the imaging of small
www.sciencedirect.com 
complexes without contributing additionally to back-

ground noise. With efforts towards functionalization of

graphene monolayers already underway, the applicability

of these supports for routine high-resolution structure

determination of various small specimens is particularly

promising.

Additional imaging devices can further increase image

SNR

Microscope accessories such as phase plates and quantum

energy filters can increase the SNR in cryo-EM images by

introducing phase contrast and deflecting inelastically

scattered electrons contributing to noise, respectively.

Theoretically, both offer advantages over conventional

imaging methods for resolving small biological targets,

though their limitations have not systematically been

tested. Several high-resolution structures have been

determined using Volta phase plate (VPP) technology

[22–25], including the first structure of the �64 kDa

human hemoglobin [26]. However, the VPP phase shift

is an inconsistent phenomenon and must be constantly

monitored and regenerated during data acquisition, mak-

ing VPPs incompatible with automated imaging work-

flows. It is not clear whether phase plate technology in its

current stage confers a significant advantage over conven-

tional imaging for all small targets, as high-resolution

structures of hemoglobin and streptavidin were recently

obtained without a phase plate using conventional defo-

cus imaging methodologies [18��,27�] (Figure 2 and

Table S1). However, a more direct comparison using

the adenosine A2A receptor coupled to an engineered

G protein demonstrated that use of a VPP yielded

improvements to resolution and the overall B-factor of

the data [28]. Further comparisons coupled with advances

to phase plate technology (see Conclusions and Future
Prospects) are necessary to understand the benefits of

these devices for resolving small complexes.

Inaccurate image alignment of small complexes is a

major limitation to successful structure determination

Despite efforts to increase image contrast and SNR,

structure determination of small complexes that are asym-

metric, conformationally flexible, or particularly lacking

in distinguishing structural features may be thwarted due

to misalignment by 3-dimensional (3D) image reconstruc-

tion programs. Signal-subtracted datasets of subtetra-

meric streptavidin have demonstrated that high-quality

2D class averages and 3D reconstructions could be

obtained for particles as small as the �13 kDa monomer

when the correct angular information (previously deter-

mined from the high-resolution tetramer structure) was

supplied; however, when global angular searches were

performed on the datasets, the accuracy of image align-

ment decreased significantly with particle size [29]. We

have also encountered similar particle misalignment

issues in our attempts to reconstruct the asymmetric

�43 kDa catalytic subunit of protein kinase A bound to
Current Opinion in Structural Biology 2020, 64:9–16
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Figure 2
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Cryo-EM reconstructions of 64 kDa hemoglobin and 52 kDa streptavidin imaged with and without a Volta Phase Plate (VPP). Left: Hemoglobin

determined to 2.8 Å resolution using conventional defocus-based imaging (top) and to 3.2 Å using a VPP (bottom). Right: Streptavidin determined

to 2.6 Å resolution using conventional defocus-based imaging (top) and to 3.2 Å using a VPP (bottom). The full map and density features (with the

corresponding atomic model docked in) are shown for each structure.
inhibitor (iPKAcat) [27�]. Although particles were readily

visible in the high-contrast images, and the 2D class

averages contained discernible structural details, the res-

olution of the final 3D reconstruction was limited by gross

misalignment of the particle images. Structure determi-

nation of small membrane proteins with few or no extra-

membrane domains is also challenging, as the bulk signal

from the disordered detergent micelle or lipid nanodisc

commonly confounds image alignment. In some cases,

partial signal subtraction of disordered regions from the

particle images can yield some improvements to the

reconstruction [30,31]; however, the likelihood of success

will depend on proper alignment of the original (non-

subtracted) images [32] and, as forewarned above,

whether the remaining signal in the subtracted images

is sufficient for accurate angular assignment.

Further improvements to cryo-EM SPA image recon-

struction algorithms that facilitate more robust alignment

of low-SNR particle images will be required to accom-

modate more routine structural studies of smaller and

conformationally variable biological targets. In the mean-

time, the addition of rigid and easily identifiable fiducial

markers (e.g. monoclonal antigen-binding fragments

(Fabs), nanobodies, or megabodies) to small targets oth-

erwise lacking in distinct structural features can facilitate

more accurate image alignment with the added benefit of

stabilizing the target complex and overcoming preferred

orientation [33–35]. If desired, the fiducial density can
Current Opinion in Structural Biology 2020, 64:9–16 
then be excluded in silico during the final steps of 3D

refinement through focused masking or signal subtrac-

tion. Structures of the �61 kDa human serotonin trans-

porter and of the �49 kDa Plasmodium falciparum CQ-

resistance transporter complexed with Fab were recently

determined to 3.6 Å and 3.2 Å, respectively, demonstrat-

ing the value of this approach for resolving complexes

well below 100 kDa [30,36]. Additionally, attachment of

small protein targets to a symmetric molecular scaffold via

Designed Ankyrin Repeat Protein (DARPin) adaptors

has been successfully implemented for structure deter-

mination of complexes as small as the �26 kDa green

fluorescent protein [37�,38,39]. The modularity of these

scaffolds allows for customization to suit a broad range of

targets, provided flexibility and self-association of the

attached complex are not issues [38].

Small complexes can be visualized at 200 and 300 keV

While the vast majority of sub-200 kDa targets were

obtained using microscopes operating at 300 keV, a small

subset of structures was determined using comparatively

cheaper 200 keV instruments [40–48], the limits of which

were explored by Herzik et al. [11,27�]. These results are

significant because they expand the utility and accessi-

bility of cryo-EM SPA for high-resolution studies of

complexes of various sizes. However, there does not

yet seem to be an obvious choice of electron energy

for imaging smaller complexes. The increase in image

contrast arising from the higher elastic scattering
www.sciencedirect.com
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Figure 3
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Flowchart for cryo-EM SPA analysis of small biological complexes. Important considerations for structure determination of small targets at each

stage of frozen specimen preparation, data acquisition, and image processing are highlighted. Potential pitfalls and possibilities for overcoming

them (as demonstrated by published work) are also indicated.
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cross-section at lower energies is offset by the concomi-

tant increase in inelastic scattering events [49], lens

aberrations [50], and the fact that existing direct detectors

perform optimally with higher keV electrons. However,

certain optical aberrations can now be estimated and

corrected for in silico [51,52], and efforts to develop a

detector for imaging 100 keV electrons are currently

underway [53��] (see Conclusions and future prospects).

Novel and drug-bound structures of small membrane

protein complexes

Cryo-EM SPA has revolutionized the structure determi-

nation of membrane proteins in particular, as membrane

proteins are notoriously recalcitrant to crystallization

efforts due to their amphipathic nature. It is perhaps

unsurprising, then, that membrane proteins stabilized

in detergents or lipid nanodiscs comprise over 60% of

all high-resolution sub-200 kDa structures deposited into

the EMDB to date, with nearly all entries obtained within

the past two years alone. Among these were de novo
structures of the human lipid exporter ABCB4 [54], the

otopetrin proton channels OTOP1 [55] and OTOP3

[55,56], several members of the TMEM16 scramblase

family [40,57,58], as well as of the structurally homolo-

gous OSCA mechanosensitive ion channel family [46,59].

It is interesting to note that the majority of structures

were obtained using a microscope equipped with an

energy filter, which may have provided some gain in

SNR particularly around the transmembrane region,

which is surrounded by disordered detergent or lipid

molecules. This may especially be the case for the com-

plexes determined using 200 keV, all of which were

imaged using an energy filter with the exception of the

OSCA 1.2 channel [46]. Finally, a number of high-reso-

lution structures of agonist-bound channels, in which

protein-ligand interactions within the binding site were

resolved with high fidelity [60–64], have provided valu-

able insights to the molecular bases for toxin binding and

selectivity. Considering the multitude of disease-relevant

small membrane protein complexes (e.g. G protein-cou-

pled receptors, which comprise over one-third of all small-

molecule drug targets) and the immense pharmacological

efforts towards developing novel therapeutics against

these targets, these findings highlight the exciting poten-

tial of cryo-EM for modulating channel activity through

structure-aided drug design.

Conclusions and future prospects
The visualization of small biological macromolecules by

cryo-EM SPA had long been dismissed as an insurmount-

able task, but recent advancements in sample preparation

and imaging methodologies are rapidly pushing the fron-

tiers of specimen sizes that can be resolved to high

resolution. Numerous groundbreaking studies from the

past few years have demonstrated that high-resolution

reconstructions of diverse biological targets ranging from

membrane proteins to RNA complexes, and as small as
Current Opinion in Structural Biology 2020, 64:9–16 
40�50 kDa, are attainable by cryo-EM SPA. A summary

of the strategies and approaches mentioned in this review

is presented in Figure 3. Looking ahead, novel technolo-

gies such as automated sample vitrification instruments (i.

e. Spotiton (commercially Chameleon) [65,66], Shakeitoff

[67], and VitroJet [68]) may mitigate sample adsorption to

the air-water interface by shortening the sample dis-

pense-to-plunge time and permit users to reproducibly

control for thin ice. Ongoing development of a continu-

ous-wave focused laser phase plate [69�] that can produce

a constant phase shift with no information loss may

further push the envelope for high-resolution structure

determination of small complexes. Additionally, the

potential for routine specimen screening and structure

determination of small targets at 100 keV or lower is an

exciting prospect from both financial and practical stand-

points, and it will be particularly interesting to explore the

resolving capabilities of lower electron energies when

paired with an appropriately optimized detector. Given

that half of all proteins in the human proteome are <50

kDa in molecular weight [70], these collective advances

will greatly expand the breadth of new and previously

unanswered biological questions that can be investigated

using cryo-EM SPA.

Conflict of interest statement
Nothing declared.

Acknowledgements
M.W. is supported as a National Science Foundation Graduate Student
Research fellow. G.C.L. is supported by a young investigator award from
Amgen, and by the National Institutes of Health (NIH) grants
R21AR072910 and R21AG061697.

Appendix A. Supplementary data
Supplementary material related to this article can be

found, in the online version, at doi:https://doi.org/10.

1016/j.sbi.2020.05.007.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Yan C, Wan R, Bai R, Huang G, Shi Y: Structure of a yeast
activated spliceosome at 3.5 A resolution. Science 2016,
353:904-911.

2. Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Ramesh M,
Espina N, Sun M, Tutuncuoglu B, Madison-Antenucci S,
Woolford JL et al.: Structure and assembly model for the
Trypanosoma cruzi 60S ribosomal subunit. Proc Natl Acad Sci
U S A 2016, 113:12174-12179.

3. Costa TR, Ignatiou A, Orlova EV: Methods in molecular biology.
Methods Mol Biol Clifton N J 2017, 1615:377-413.

4. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI,
Pragani R, Boxer MB, Earl LA, Milne JL et al.: Breaking cryo-EM
resolution barriers to facilitate drug discovery. Cell 2016,
165:1698-1707.
www.sciencedirect.com

https://doi.org/10.1016/j.sbi.2020.05.007
https://doi.org/10.1016/j.sbi.2020.05.007
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0005
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0005
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0005
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0010
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0010
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0010
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0010
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0010
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0015
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0015
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0020
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0020
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0020
http://refhub.elsevier.com/S0959-440X(20)30084-1/sbref0020


Single particle cryo-EM of specimens <200 kDa Wu and Lander 15
5.
�

Zhang K, Li S, Kappel K, Pintilie G, Su Z, Mou T-C, Schmid MF,
Das R, Chiu W: Cryo-EM structure of a 40 kDa SAM-IV
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