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SUMMARY

Thermosomes are group II chaperonins responsible
for protein refolding in an ATP-dependent manner.
Little is known regarding the conformational changes
of thermosomes during their functional cycle due to
a lack of high-resolution structure in the open state.
Here, we report the first complete crystal structure
of thermosome (rATcpnb) in the open state from
Acidianus tengchongensis. There is a �30� rotation
of the apical and lid domains compared with the
previous closed structure. Besides, the structure
reveals a conspicuous hydrophobic patch in the lid
domain, and residues locating in this patch are
conserved across species. Both the closed and
open forms of rATcpnb were also reconstructed by
electron microscopy (EM). Structural fitting revealed
the detailed conformational change from the open to
the closed state. Structural comparison as well as
protease K digestion indicated only ATP binding
without hydrolysis does not induce chamber closure
of thermosome.

INTRODUCTION

Chaperonins are a class of molecular chaperones (Hemmingsen

et al., 1988), oligomeric complexes that act as protein folding

cages and facilitate proper protein folding through ATP

consumption. Chaperonins have been classified into two

subfamilies (group I and group II) based on their structure and

sequence (Kimet al., 1994).Group I chaperonins exist in bacteria,

mitochondria, and chloroplasts, as exemplified by the well-

studied Escherichia coli chaperonin GroEL (Bukau and Horwich,

1998; Ranson et al., 2006). Group II chaperonins are found in

archaea (Phipps et al., 1991) or eukaryotic cytosol (Frydman

et al., 1992; Gao et al., 1992). Archaeal group II chaperonins are

also referred as thermosomes due to their extreme thermal

stability (Bigotti and Clarke, 2008). In eukaryotes, the cytosolic
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group II chaperonin containing TCP-1 (CCT) is reported to facili-

tate the correct folding of cellular cytoskeletal elements such as

actin and tubulin (Gao et al., 1992; Yaffe et al., 1992).

A common feature shared by group I and II chaperonins is

a characteristic double ring structure, in which each subunit

contains three domains: an equatorial domain that contains an

ATP-binding site and is involved in interring contacts, an apical

domain for substrate binding, and an intermediate domain that

connects the equatorial and apical domains via flexible hinges

(Ditzel et al., 1998; Xu et al., 1997). One of the major differences

between these two groups is that group I requires the cofactor

GroES (Tilly et al., 1981) to form a single ring and enclose the

cage, whereas group II has a covalently attached lid domain

that extends from the apical domain to cover the cage (Ditzel

et al., 1998). Another difference is that whereas a group I chap-

eronin always consists of two homoheptameric rings (Xu et al.,

1997), each ring of a group II chaperonin consists of eight or

nine hetero- or homosubunits (Ditzel et al., 1998; Frydman

et al., 1992; Schoehn et al., 2000; Shomura et al., 2004; Xu

et al., 1997).

Before this work, two available crystal structures of thermo-

somes from both Thermoplasma acidophilum (Ditzel et al.,

1998) and Thermococcus sp. strain KS-1 (Shomura et al., 2004)

were shown to adopt a tightly closed conformation, exhibiting

apical domains and interring contacts that differ from group I

chaperonins. However, various conformations of group II chap-

eronins were described by cryoEM reconstruction, including

closed forms, open forms, and asymmetric bullet-shaped forms,

indicating the existence of domain movement during their func-

tional cycles (Clare et al., 2008; Schoehn et al., 2000). In the

absence of nucleotides, both thermosomes and CCTwere found

to have an open form (Llorca et al., 1999; Nitsch et al., 1998).

Furthermore, the open and closed states of CCT have recently

been comparatively modeled based on middle resolution

cryoEM maps, suggesting that the lid closure was achieved by

�25� rotation of the intermediate domain and additional 50� rota-
tion of the apical domain toward the equatorial domain (Booth

et al., 2008). However, comparison between 8 Å cryoEM struc-

ture of thermosome Mm-cpn in the open state and its 4.3 Å

cryoEM structure in the closed state suggested the chamber

closure was completed by the inward movement of the entire
All rights reserved
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Table 1. Table X-Ray Diffraction Data Collection and Refinement

Statistics

Data Collection Form I Form II

Space group C2 C2

Cell Dimensions

a, b, c (Å) 501.0, 276.3, 161.0 223.7, 283.0, 160.8

alpha, beta, gamma (�) 90.00, 106.8, 90.00 90.0, 133.9, 90.0

Resolution (Å) 50.0–3.80 (3.94–3.80) 50.0–3.70 (3.90–3.70)

Rmerge
a 0.181 (0.390) 0.117 (0.476)

I/s 9.0 (1.6) 7.4 (2.3)

Completeness (%) 97.0 (81.4) 99.5 (99.4)

Redundancy 3.2 (2.5) 3.2 (3.3)

Refinement

Resolution (Å) 50.0–3.80 50.0–3.70

No. reflections 199,545 76,576

Rwork/Rfree (%)b 36.5/37.1 27.7/28.3

No. Atoms

Protein (one subunit) 3849 3849

Ligand/ion (ADP) — 27

B Factors (Å2)

Equator domain 70.4 108.5

Median domain 108.1 135.0

Apical domain 112.0 137.2

Lid domain 118.8 147.1

Rmsds

Bond lengths (Å) 0.01 0.01

Bond angles (�) 1.41 1.48

Corresponding parameters for the highest resolution shell are shown in

parentheses.
a Rmerge =

P
h

P
ijIih � < Ih > j / Ph

P
i < Ih > , where < Ih > is the mean

intensity of the observation Iih reflection h.
bRwork =

P
(kFp(obs)j � jFp(calc)k) /

PjFp(obs)j; Rfree = R factor for

a selected subset (5%) of the reflections that was not included in prior

refinement calculations.
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subunit (Zhang et al., 2010). As a result, the detailed conforma-

tional changes during transition from open to close is still not

well characterized due to the lack of a high-resolution structure

for group II chaperonin in open state. Furthermore, the substrate

binding determinants are unclear for group II chaperonins.

Besides, there are two models describing the transition from

the open to closed state. One model suggests that the binding

of ATP triggers chamber closure (Iizuka et al., 2003), while the

other model suggests that it is the ATP hydrolysis that induces

the closed conformation (Bigotti and Clarke, 2008). Those ques-

tions are importantly related to understand the molecular func-

tion of group II chaperonin and need to be carefully investigated.

The archaea Acidianus tengchongensis strain S5 grows in the

Tengchong acidothermal springs in Southwestern China with an

optimal temperature of 70�C and pH of 2.5. Two genes of this

archaea (cpna and cpnb) were found to encode two types of

chaperonin subunits (ATcpna and ATcpnb) that can assemble

into thermosomes either homogenously or heterogeneously

(Wang et al., 2010). Preliminary studies have shown that

recombinant ATcpna (rATcpna) assembles into an 8-fold double

ring structure, recombinant ATcpnb (rATcpnb) into a 9-fold

structure, and a combination of rATcpna and rATcpnb assem-

bles into a 9-fold heterooligomer with 1:2 stoichiometry (Wang

et al., 2010). Both heterooligomer and homooligomer show trace

ATP hydrolysis activity and limited refolding activity in vitro

(Wang et al., 2010).

In this study, we focus on describing the 9-fold structures of

rATcpnb by X-ray crystallography and electron microscopy.

We solved the first high-resolution (3.7 Å) structure of complete

group II chaperonin in its open state and found that its conforma-

tional changes from the open to closed state are achieved by

both �30� intrinsic rotation of lid and apical domains and the

inward movement of the entire subunit. The conspicuous hydro-

phobic patch in the lid domain was found conserved across

species and believed as a potential substrate-binding site.

Structural analysis and protease K digestion assay suggested

only ATP binding without hydrolysis could not trigger a closed

structure for group II chaperonin.

RESULTS AND DISCUSSION

Crystal Structure of rATcpnb in the Open State
The protein rATcpnb was cloned, heterogeneously expressed in

E. coli and purified by chromatography. Purified rATcpnb was

assembled into thermosomes in vitro under proper conditions

(see Experimental Procedures). The rATcpnb thermosome

complexes (if not indicated, rATcpnb will be used to represent

the rATcpnb thermosome discussed below) were successfully

crystallized into two different crystal forms (Form I and Form II).

Both Form I and Form II share the same C2 space group,

although Form I crystals have a larger unit cell than Form II

(Table 1). Using theMatthews coefficient estimation, 27 rATcpnb

monomers (one and a half of rATcpnb thermosomes) were

calculated to occupy the asymmetrical unit of Form I, and nine

monomers (half of a rATcpnb thermosome) of Form II. The crystal

structures of Form I and Form II were determined by molecular

replacement using a model built from the cryoEM map of

rATcpnb and were finally refined to 3.8 Å (Rwork 36.5% and

Rfree 37.1%) for Form I and to 3.7 Å (Rwork 27.7% and Rfree
Structure 18, 1270–1
28.3%) for Form II. The statistics of data collection and structural

refinements are summarized in Table 1. Although the structure

determined in Form I is similar to that of Form II, the better

diffraction data quality of Form II resulted in a more precise

map (see Figure S1 available online). For this reason, only the

Form II crystal structure was used for further analysis.

Of the 553 residues present in each rATcpnb subunit, residues

1–27 and 533–553 were not assigned due to the lack of electron

density. The rATcpnb subunit itself shares a common fold with

other group II chaperonins, consisting of an equatorial (residues

28–149 and 412–532), intermediate (residues 150–224 and

377–411), apical (residues 225–252 and 283–376), and lid

domain (residues 253,282) (Figures 1A and 1B). The equatorial

domain contains a seven-helix bundle (H1-H4-H12-H13 and

H3-H5-H16) flanked by three helices (H2, H14, and H15) and

five b strands (S1, S2, S15, S16, and S17). The b strands S1

and S2 form a b sheet by interacting with the strand S17 from

the adjacent subunit. The intermediate domain is mainly made

up of a three-helix bundle (H6, H7 and H11) next to a two

stranded b sheet (S4 and S14). The apical domain contains
279, October 13, 2010 ª2010 Elsevier Ltd All rights reserved 1271



Figure 1. Crystal Structure of rATcpnb

(A) Structural features of the rATcpnb monomer, colored

by domain. The lid is purple, apical domain is red, interme-

diate domain is yellow, and the equatorial domain is green.

The modeled ADP is colored by element.

(B) Topology of rATcpnb monomer.

(C) The stereo view of nucleotide binding site of rATcpnb.

The 2Fo-Fc omit difference map (contour level 0.8) shows

an elongated stretch of electron density on top of the

equatorial domain, into which the ADP could be modeled.

The adjacent residues involved in interaction are labeled.

(D and E) Side and top views of overall rATcpnb structure.

(F) Hydrophobic patch in the lid domain of group II chap-

eronin. Hydrophobic surface representation of rATcpnb

crystal structure. The hydrophobic surface is colored by

yellow and the hydrophilic by blue.

(G) Sequence alignments of thermosomes across

several species reveal hydrophobic patch in the lid is

conserved and corresponding site is indicated in green

triangle. The GenBank accessions of protein sequences

form top to bottom are AAO47380, YP_255343,

YP_003400009, NP_963436, YP_003459021, NP_275933,

NP_142040, YP_001048251, ZP_05570324, ABX13688,

and ACB08055, respectively.

See also Figure S1.
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two b sheets (S5-S6-S12-S13 and S7-S8-S9-S10-S11) sur-

rounded by two a helices (H9 and H10) above and below. The

protruding lid is mainly comprised of a helix H8 and a flexible

loop between H8 and S7. The nucleotide binding site is located

directly above the equatorial domain, as evidenced by a clear

density in the omit 2FoFc map (Figure 1C).

In contrast to the thermosome crystal structures from Thermo-

plasma acidophilum (TAcpn) (Ditzel et al., 1998) and Thermococ-

cus sp. strain KS-1 (TKcpn) (Shomura et al., 2004), both of which

adopt a closed form with 8-fold symmetry which might be

caused by high concentration of ammonium sulfate in the
1272 Structure 18, 1270–1279, October 13, 2010 ª2010 Elsevier Ltd All rights reserve
crystallization buffer, the crystal structure of

rATcpnb exhibits an open conformation with

9-fold symmetry. Superposition of the rATcpnb

and TAcpna/TAcpnb/TKcpn subunits yields

a large structural rmsd (root mean square devi-

ation) of 1.4/1.7/2.4 Å for the 460/468/470 Ca

atoms, respectively (Figure 2A), despite a high

sequence homology (75% sequence similarity

and 54% identity) (Figure S2). The individual

domains (equatorial, intermediate, apical, and

lid) of rATcpnb and TKcpn were further com-

pared by superposition, yielding rmsd values

of 1.0/0.8/0.9/1.3 Å for the 217/93/115/25 Ca

atoms, respectively. The high degree of struc-

tural similarity among the apical, intermediate,

and equatorial domains demonstrates that

these domains are not flexible. The high rmsd

value of the lid domain is due to its inherent

structural plasticity (Ditzel et al., 1998; Klumpp

et al., 1997). The different structural conforma-

tions between the rATcpnb and TKcpn mono-

mers are due to domain rotation and flexibility

of the lid domain (Movies S1 and S2). There is
a �30� rotation of the apical and lid domain between rATcpnb

and TKcpn monomers (Figure 2A).

In Form II crystals, two asymmetric units make up the

complete rATcpnb thermosome, comprising two stacked, nine

subunit rings correlated by the crystallographic 2-fold axis. The

rATcpnb thermosome adopts an open state that differs from

all previously reported closed structures (Ditzel et al., 1998;

Shomura et al., 2004), exhibiting an overall cylindrical shape

with a height of 185 Å along the 9-fold axis and a diameter of

168 Å along the 2-fold axis (Figures 1D and 1E). Each subunit

has a surface area of 25,600 Å2. The intraring contacts between
d



Figure 2. Comparison of the Monomer and Overall structures of the Two Thermosome States

(A) The rATcpnb crystal structure is an open state colored in cyan. The TKcpn crystal structure represents the closed state colored in pink.

(B) Superposition of the overall structures for rATcpnb in the open state (cyan) and closed state (pink) based on the cryoEM and nsEM map, respectively. One

isolated subunit is enlarged and shown on the right. See also Figure S2 and Movies S1–S5.
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adjacent subunits are localized mainly at the equatorial domains

through interactionsmediated by b strands S1, S2, and S17, with

a surface area of about 970 Å2 (Figures 1A and 1D). For interring

interaction, each subunit interacts with only one subunit of the

opposite ring through its equatorial domain. This interring

contact interface is about 630 Å2, with electrostatic interactions

mediated by eight pairs of salt bridges.

Around the inner surface of the chamber, there is a conspic-

uous hydrophobic patch located in the lid domain, which is

composed of residue Ala262, Ile264, Ile266, Pro269, Met272,

Phe275, and Leu276 (Figures 1F and 1G). Based on the

sequence alignment of thermosome among representative

species, it was found that those residues are highly conserved

with two invariant residues Pro269 and Phe275 across species

(Figure 1G), suggesting those residues might be the substrate

binding determinants.

Electron Microscopy Study of rATcpnb and Structural
Fitting
We prepared the purified rATcpnb sample in the presence

and absence of ATP (referred to below as rATcpnb_ATP

or rATcpnb_apo, respectively) for cryoelectron microscopy

(cryoEM) studies. Two-dimensional image analysis, intensive

2D classification and averaging of more than 40,000 rATcpn-

b_apo/rATcpnb_ATP particle images revealed many classes

with top views of 9-fold symmetry and a small portion (�10%)

of 10-fold symmetry (Figures 3A and 3B) that was confirmed

by blue native PAGE (Figure S3). Three-dimensional cryoEM

structures of rATcpnb_apo and rATcpnb_ATP with imposed

9-fold symmetry were reconstructed with resolution 8.8 and

8.4 Å that were determined by RMEASURE, respectively (Sousa

andGrigorieff, 2007). Both cryoEM structures share similar cylin-

drical shape with a diameter of 173 Å and a height of 180 Å

and exhibit an open conformation with the bottom lid domain

density missing (Figure 3C). Interestingly, the top lid domain

density is clearer in rATcpnb_ATP than in rATcpnb_apo, which

suggests the flexibility of lid domain is reduced after ATP binds
Structure 18, 1270–1
to thermosome. In accordance with the open crystal structure,

the interring and intraring contacts in cryoEM maps are only

involved in the equatorial domains and the intermediate and

apical domains are disconnected.

Docking the thermosome TKcpn subunit structure (PDB

1Q3R) en bloc into the cryoEM map of rATcpnb_ATP does not

yield good fit (Figure S4). The octadecamer model, built by fitting

18 TKcpn subunits into the cryoEM map, shows severely loose

intraring interactions, invalidating such a model (Figure S5).

Docking the crystal structure of the rATcpnb subunit into the

same cryoEM density, all equatorial, intermediate, and apical

domains exhibit an excellent fit. By observation, most structural

elements (a helices, b sheets, and loops) fit the density tubes,

layers, and blobs precisely (Figure 3D). Most importantly, the

helical protrusion of the lid domain fits well into lid density of

the upper ring (Figure 3D), indicating that the crystal structure

of rATcpnb shares the same open state observed in the cryoEM

map.

Although different conditions were tried many times, no

rATcpnb structure in closed conformation could be found by

cryoEM study at all. However, the rATcpnb thermosome exam-

ined by negative staining electron microscopy (nsEM) appears

as a 9-fold closed structure (Figure 4). The relatively even orien-

tation distribution enabled us to reconstruct the structure of

rATcpnb to 14 Å resolution that was assessed by RMEASURE

(Sousa and Grigorieff, 2007). The overall nsEM structure exhibits

an oblong sphere shape with a diameter of 170 Å and a height of

160 Å (Figure 4C). Its particularly salient feature is that both rings

adopt a closed conformation.

The crystal structure of rATcpnb subunit could not fit into

either the top or bottom ring of nsEM map very well (Fig-

ure S4). The octadecamer model built by fitting eighteen

rATcpnb subunits into the nsEM map shows severe structural

collisions around the lid domain, indicating that it is an incorrect

model (Figure S5). Whereas, docking the subunit from the crystal

structure of closed-state TKcpn thermosome into the nsEMmap

provides a fairly good fitness (Figure 4D). Due to the good fitness
279, October 13, 2010 ª2010 Elsevier Ltd All rights reserved 1273



Figure 3. CryoEM Structure of rATcpnb in Open State and Atomic Structure Fitting

(A) Raw image of particles in cryo-EM. Top and side views are indicated by blue arrows. The scale bar is 50 nm.

(B) Averaging views (top, tilt, and side) of selected 2D classes of cryoEMparticles of rATcpnb_ATP arematched to the corresponding 3D projections. The top view

exhibiting 10-fold symmetry, with a small portion (�10%) from 2D classification indicated in the blue square.

(C) Surface representation of the side, inner, top, and bottom views of the cryo-EM structure of rATcpnb_ATP. The cryo-EM structure of rATcpnb_apo is similar to

rATcpnb_ATP and not shown here. EMmap are colored based on domain division, with the apical and lid domains in cyan, the intermediate domain in yellow, and

the equatorial domain in red.

(D) Equatorial, apical domain, and side views of the rATcpnb subunit crystal structure fit into the rATcpnb_ATP cryoEM map.

See also Figures S3–S5.
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and low resolution of nsEMmap, the fitted model was not further

optimized by flexible modeling tools. The structural fitting indi-

cates that the nsEM structure of rATcpnb shares the same

closed conformation with the closed structure of TKcpn but

not the open structure of rATcpnb.

Implication Based on Structural Comparison
and Analysis
It might be considered whether the subunit conformational

difference between the rATcpnb open structure and the TKcpn

closed structure is derived from their different symmetries. The

conclusion is negative since the 8-fold structure of rATcpna

was also successfully reconstructed by cryoEM and shows an

open conformation (K.Z., L.W., and F.S., unpublished data),

which could be fitted better by the crystal structure of rATcpnb

than by the TKcpn structure. As a result, sharing with very high-

sequence homology, such large conformational difference
1274 Structure 18, 1270–1279, October 13, 2010 ª2010 Elsevier Ltd
between rATcpnb and TKcpn should have their biological

significance.

All of above, it is clear that either cryoEM structures or crystal

structure of rATcpnb depict the similar open conformation, while

the nsEM structure of rATcpnb has a closed conformation.

Supposing these two different conformations represent their bio-

logical states, it is necessary to compare them further and inves-

tigate the conformational change during transition from open to

closed state. The rATcpnb thermosome models in open and

closed form were aligned after superimposing their 9-fold axes

and equatorial planes, exhibiting large conformational changes

(Figure 2B). Both a �30� counterclockwise rotation of the apical

and lid domains and an inward movement of the entire subunit

were found to be indispensable for transition from the open to

the closed state (Movies S3–S5), which fixed the previous

confused reports that lid closure of CCT needs domain rotation

(Booth et al., 2008), but the closing chamber of thermosome
All rights reserved



Figure 4. Negative Staining EM Structure of rATcpnb in Closed State and Atomic Structure Fitting

(A) Raw EM image of negatively stained particles. Top and side views are indicated by blue arrows. The scale bar is 50nm.

(B) Averaging views (top, tilt, and side) of selected 2D classes of the negatively stained particles are matched to the corresponded 3D projections.

(C) Surface representation of the side, inner, top, and bottom views of the negative stain structure. EMmap are colored based on domain division, with the apical

and lid domains in cyan, the intermediate domain in yellow, and the equatorial domain in red.

(D) Side, top, and bottom views of the TKcpn subunit crystal structure fit into the rATcpnb nsEM map.

See also Figures S4–S5.
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Mm-cpn requires the inward movement of entire subunit (Zhang

et al., 2010). In addition, only the rotation of the lid and apical

domains was observed for rATcpnb and there is no rotation for

intermediate domain with respect to equatorial domain, which

is different to the medium-resolution cryoEM study of CCT

(Booth et al., 2008). Upon the high-resolution structure of

rATcpnb in open state, the detailed conformational changes

described in this work are much clearer and more accurate

than before. Furthermore, such kind of conclusion was even

strengthened when we compared the open cryoEM model of

8-fold rATcpna with the crystal structure of closed TKcpn ther-

mosome and found the exact same conformational changes

(K.Z., L.W., F.S., unpublished data).

What kinds of biological states do the open structures of

rATcpnb represent? The 2FoFc omit map in the crystal structure

of rATcpnb indicates it is a nucleotide-binding structure (Fig-

ure 1C). The nucleotide was further analyzed by high-perfor-
Structure 18, 1270–1
mance liquid chromatography experiments and recognized as

ADP. Comparison between the cryoEM maps of rATcpnb_apo

and rATcpnb_ATP showed clear additional density at the nucle-

otide-binding site in rATcpnb_ATP (Figure 5A), which confirmed

that the open structures of rATcpnb_ATP and rATcpnb_apo

represent the ATP-binding state and nucleotide-free state,

respectively. As a result, it is clear that nucleotide binding would

not trigger the nucleotide-free structure of rATcpnb from the

open state to the closed state, which was further proved by

protease K digestion experiments. In the presence of different

nucleotides (ATP or ADP), the rATcpnb thermosome exhibits

sensitivity to protease K digestion (Figure 5B), indicating it keeps

the open conformation with or without nucleotide binding

because it was reported that the closed thermosome was resis-

tant to cleavage by protease (Iizuka et al., 2003). The fact that

ATP binding does not induce a closed structure of rATcpnb is

different from Mm-cpn and CCT (Booth et al., 2008; Zhang
279, October 13, 2010 ª2010 Elsevier Ltd All rights reserved 1275



Figure 5. ATPBindingwithoutHydrolysis CouldNot Trigger aClosed

Structure for Group II Chaperonin

(A) A comparison of the electron density near the ATP-binding sites of the

rATcpnb_apo and rATcpnb_ATP cryoEMmaps. On the left the rATcpnb crystal

structure is fitted into the rATcpnb_ATP cryoEM map. The middle shows the

difference map between the rATcpnb_ATP cryoEM map and the rATcpnb

crystal structure with ADP omitted. The right shows the rATcpnb crystal struc-

ture is fitted into the rATcpnb_apo cryoEMmap. ATP shown as red stick model

is placed into the nucleotide binding pocket.

(B) Protease K digestion assay of rATcpnb under different conditions. The

rATcpnb incubated with ADP, ATP, ADP/NaF/AlCl3, or ATP/NaF/AlCl3 were

digested by protease K at 65�C for 5 min. Each lane is labeled.

Structure

Open State Structure of Thermosome
et al., 2010). We further conclude that it is not due to the temper-

ature because the protease K digestion experiment was carried

at physiological temperature. Meanwhile, we incubated rATcpnb

thermosome in its physiological temperature with the presence

of ATP and AlF3 before rapid freezing and did not find the closed

structure by the subsequent cryoEM study. We speculate that it

is the low ATP hydrolysis activity of rATcpnb (Wang et al., 2010)

to keep ATP bound to rATcpnbwithout hydrolysis and enable us

to observe the authentic open structure of rATcpnb in ATP bound

state. In contrast, whenMm-cpn thermosome or CCTwasmixed

with ATP and AlF3, ATP would be hydrolyzed into ADP and the

ATP hydrolysis transition state could be only captured. As

a result, our structural study would further support the opinion

that only ATP binding without hydrolysis could not drive the

conformation from the open to the closed state for group II chap-

eronin.

Conclusions
Before this work, without a high-resolution structure of group II

chaperonin in the open state, researchers could only separate

the closed crystal structure into equatorial, intermediate, and
1276 Structure 18, 1270–1279, October 13, 2010 ª2010 Elsevier Ltd
apical domains and fit the individual domains into the open-state

cryoEM map to obtain a pseudo atomic model of group II chap-

eronin in the open state (Booth et al., 2008; Clare et al., 2008).

Here, we presented the first high-resolution (3.7 Å) complete

structure of group II chaperonin in the open state which could

be fit into the open state cryoEM map perfectly so that the

conformational changes from the open to the closed state could

be precisely described in details. In our study, it is found that the

detailed conformational changes during transition from the open

to the closed state could be achieved by�30� intrinsic rotation of
lid and apical domains and the inward movement of entire

subunit. Either domain rotation or subunit movement alone

could not complete the chamber closure of group II chaperonin.

Furthermore, the conspicuous hydrophobic patch in the lid

domain was found conserved across species and might be

a potential substrate-binding site that needs to be further inves-

tigated. Structural analysis and protease K digestion assay sug-

gested only ATP binding without hydrolysis could not trigger

a closed structure of group II chaperonin.

EXPERIMENTAL PROCEDURES

Molecular Cloning of rATcpnb

The molecular cloning of rATcpnb was performed as recently reported (Wang

et al., 2010). In brief, genomic DNA of Acidianus tengchongensis strain S5 was

prepared as described by Lauerer et al. (1986). The complete sequence of

rATcpnb gene was measured by inverse PCR (Ochman et al., 1988). The

cDNA of rATcpnb was amplified by PCR taken the genomic DNA as template

and then subcloned into pET23b within NdeI and BamHI restriction sites.

Expression and Purification of rATcpnb

The rATcpnb protein was overexpressed in the E. coli strain Rosetta-gamiTM

B(DE3)pLysS (Novagen) using the pET23b expression vector (Novagen). The

recombinant bacteria were grown in Terrific Broth medium (TB) at 37�C.
When the optical density (OD) of the culture at 600 nm reached 1.6�1.8, iso-

propyl b-D-1-thiogalactopyranoside (IPTG) was added to a final concentration

of 0.4 mM. The culture was further incubated for 20 hr at 16�C. The harvested

cells were broken in buffer A (20 mM Tris-HCl, pH 8.0, 5 mM EDTA-Na, 5 mM

MgCl2) by sonication. After centrifugation for 20 min at 10,0003 g, the super-

natant was incubated at 80�C for 30 min. After further centrifugation for 20 min

at 10,000 3 g, the supernatant was applied to the Q-Sepharose fast flow

column (GE Healthcare) that was preequilibrated by buffer A. After washing,

the column was eluted using a linear NaCl gradient from 0 to 0.6 M in buffer

A. The target rATcpnb protein was eluted at 0.14MNaCl, fractionated, and dia-

lyzed against buffer A overnight at 4�C. After dialysis, the protein was treated

with 0.25 mM ATP and 1 M (NH)2 SO4 at 37�C for 5 hr to facilitate rATcpnb

assembly and then concentrated using an Amicon Ultra-15 filter (Millipore).

The concentrated solution was applied to the Superdex 200 10/300GL column

(GE Healthcare), and the fully assembled rATcpnb thermosomes were eluted

using buffer A, separate from the monomers. The fractions were collected,

concentrated to �20 mg/ml and stored at �80�C. The purity of rATcpnb was

analyzed by SDS-PAGE and blue native PAGE.

Blue Native PAGE

The concentration of the sample gel was 4% and the gradient separation gel

concentration ranged from 5% to 13%. The loading amount of sample was

about 100 mg. Blue native PAGE (BN-PAGE) was performed at 4�C in a vertical

apparatus with a deep blue cathode buffer B (50mMTricine, 7.5mM imidazole

[pH 7.0], 0.02% Coomassie blue G-250). At the beginning of the gel running,

the electrophoresis voltage was maintained at 100 V until the sample entered

into the sample gel. Then, the electrophoresis current was kept as a constant

15mA, and the electrophoresis voltage was limited to below 500 V. After about

one-third of the total running distance, the cathode buffer B was replaced by

cathode buffer B/10 for overnight electrophoresis (Wittig et al., 2006). After

running BN-PAGE the gel was stained by Coomassie blue R250.
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Electron Microscopy, Image Processing, and 3D Reconstruction

For negative staining electron microscopy, 5 ml of 1 mg/ml rATcpnb was

applied to a glow-discharged carbon-coated grid that was stained with 5 ml

of 2%uranyl acetate. The negative stained rATcpnbwas imaged on a transmis-

sion electron microscope Tecnai T20 (FEI, Netherlands) with a LaB6 electron

source, operated at 200 kV. The electron micrographs were recorded on

a 2Kx2K UltraScan 894 CCD camera (Gatan) with a nominal magnification of

70,000 and a pixel size of 2 Å. The contrast transfer function (CTF) of each

CCD image was determined using CTFFIND3 (Mindell and Grigorieff, 2003)

and corrected by phase flip using CTFFINDA from the Image2000 package

(Crowther et al., 1996). After manual particle selection, �2300 selected

particles were classified and averaged using the program ‘‘refine2d.py’’ in

the EMAN suite (Ludtke et al., 1999). A 3D initial model was created using

the program ‘‘startcsym’’ and further refined using ‘‘refine’’ from the EMAN

suite (Ludtke et al., 1999).

For cryoelectron microscopy, either 2 ml of rATcpnb (the purified rATcpnb

monomers were assembled into thermosomes with existence of ATP so this

sample was placed in refrigerator for two weeks to make ATP fully hydrolyzed

and released before plunge freezing) at 20 mg/ml or 3 ml of rATcpnb$ATP$ALF3
at 12 mg/ml was applied to a C-flat grid (r2/2, Protochips Inc.) and treated by

the Solarus plasma cleaner system (Model 950, Gatan). The grids were then

blotted and plunged into liquid ethane using a Vitrobot (FEI, Netherlands)

running at 4�C and 95% humidity, transferred to a CT3500 cryo-holder (Gatan)

and loaded into a Tecnai F20 FEG electron microscope (FEI, Netherlands). The

electron microscope was operated at 120 kV and the rATcpnb_apo and

rATcpnb_ATP samples were imaged using the LEGINON (Carragher et al.,

2000; Suloway et al., 2005) automatic data acquisition system in the low-

dose mode. The images were recorded on a 4K34K UltraScan 895 CCD

camera (Gatan) with a final pixel size of 1.55 Å.

Tens of thousands of particles were automatically selected using FindEM

(Roseman, 2004). The CTF of each micrographs was determined using

CTFFIND3 (Mindell and Grigorieff, 2003) in the image2000 package (Crowther

et al., 1996), and then the phases of each particle were corrected by using the

‘‘applyctf’’ program in the EMAN suite (Ludtke et al., 1999). After two-dimen-

sional classification and averaging by the program ‘‘refine2d.py’’ in the

EMAN suite, several bad classes with no clear structural information were dis-

carded. The initial model was created using the program ‘‘startcsym’’ in EMAN.

Three Gaussian noises under the same level were added into the initial model,

resulting in three starting models, which were further refined by using ‘‘multi-

refine’’ in EMAN suite to remove the bad particles. Final refinements were per-

formed using ‘‘refine’’ in EMAN with Spider scripts (Frank et al., 1996; Shaikh

et al., 2008) embedded for correspondence analysis (CORAN) of each image

class, wrapped in the Appion package (Lander et al., 2009). The final recon-

structed density map was further sharpened by an amplitude correction algo-

rithm using the program EM-BFACTOR (Fernandez et al., 2008). In summary,

the rATcpnb_apo reconstruction used �46,000 particles in the final refine-

ment, and, for rATcpnb_ATP, �69,000 particles were used.

The resolutions of the above 3D reconstructions were assessed by the

program RMEASURE (Sousa and Grigorieff, 2007) using the FSC 0.143

threshold. In addition, the suggested resolutions of the nsEMmap of rATcpnb,

cryoEM map of rATcpnb_apo and the cryoEM map of rATcpnb_ATP are

approximately 14, 8.8, and 8.4 Å, respectively.

Crystallization of the rATcpnb and Postcrystal Treatment

It should be mentioned that purified rATcpnbmonomers were assembled into

thermosomes in vitro with existence of ATP so the sample used for crystalliza-

tion contained ATP that was gradually hydrolyzed by rATcpnb for 1 week.

Purified rATcpnb thermosome (6 mg/ml) was crystallized in 100 mM Tris-

HCl, 1.2 M Li2SO4 (pH 8.0). Initially, leaf-shaped crystals were obtained with

very weak diffraction. We optimized these rATcpnb crystals by mixing 1 ml of

protein solution (5 mg/ml rATcpnb, 20 mM Tris-HCl [pH 8.0], 5 mM EDTA-

Na, 5 mM MgCl2) and 1 ml of mother liquid (100 mM Tris-HCl [pH 8.5], 1.0 M

Li2SO4) at 289 K over a 200 ml reservoir solution (100 mM Tris-HCl [pH 8.5],

1.15 M Li2SO4) by the hanging drop vapor diffusion method. Some single crys-

tals reached a size of 0.23 0.23 0.5 mm3. The diffraction of the rATcpnb crys-

tals was dramatically improved by soaking them into a dehydration solution of

3.5 M ammonium sulfate for approximately 12 hr. Certain single, large crystals

treated by dehydration could diffract to 6.0–4.5 Å in-house, and then to
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4.0�3.5 Å in synchrotron radiation. After dehydration, the crystals were rapidly

frozen in liquid nitrogen and stored for screening and data collection.

Data Collection and Processing

Diffraction data for the rATcpnb crystal Form I were collected on a beamline

BL-5A (detector Quantum 315 CCD) of the Photon Factory (Tsukuba, Japan)

at a temperature of 100 K and using radiation of wavelength 1.000 Å. Because

of the large unit cell and the poorly diffracting, highly mosaic crystal, the

data collection parameters were carefully selected and controlled. In partic-

ular, the crystal-to-detector distance was set to 530 mm and the oscillation

angle was set to 0.3� for diffraction overlap minimization. The exposure time

was optimized to 10 s to balance the diffraction resolution and radiation

damage.

One year later, a diffraction data set for rATcpnb crystal Form II was

collected on the beam line BL-17A (detector Quantum 270 CCD) of the Photon

Factory (Tsukuba, Japan) at a temperature of 100 K and using radiation of

wavelength 0.900 Å. The crystal-to-detector distance was set to 511.9 mm

and the oscillation angle was set to 0.5�. The exposure time was optimized

and set to 15 s.

The diffraction data sets were indexed, merged, and scaled using the

HKL2000 program suite (Otwinowski and Minor, 1997) for crystal Form I and

MOSFLM (Powell, 1999) for Form II; the data processing statistics are summa-

rized in Table 1.

Molecular Replacement and Structural Refinement

Before diffraction data for crystal Form II were collected, the diffraction data

set of Form I was used to determine the crystal structure bymolecular replace-

ment. Fitting the complete coordinates of the subunits from the TAcpna,

TAcpnb, or TKcpn thermosomes into the cryoEMmap of rATcpnb did not yield

a successful molecular replacement model. The correct starting model was

manually built by fitting nine equatorial domains from the TKcpn subunits

(pdb code: 1Q3R) into the cryoEM map of rATcpnb_apo using UCSF Chimera

(Goddard, 2007), which resulted in a single ring model. This model was used

for molecular replacement with Phaser (McCoy et al., 2007), which produced

several equivalent and significant solutions. The solution with the highest

translational likelihood gain (6531), Z-score (36.4), and good crystal packing

was selected for further phasing.

Initial phasing yielded a clear electron density map around the equatorial

domains, but a very poor and indiscriminate density around the other regions.

The electron density map was dramatically improved by imposing the non-

crystallographic symmetry (NCS) averaging technique, combined with phase

extension from 10 to 3.8 Å and a small extension step of �0.002 Å-1 in the

reciprocal space. The averaged density map showed very good connectivity,

and the secondary structures could be easily recognized. An initial poly-

alaninemodel was built manually using Coot (Emsley andCowtan, 2004) under

the guidance of the averaged map and topology of the TKcpn subunit. After

rigid body refinement of the polyalanine model by Refmac5 (Winn et al.,

2001), another round of NCS averaging and phase extension was applied to

produce further improved electron density, from which large residues such

as Trp and Tyr could be distinguished. These residues were assigned and

used as reference points in the sequence to locate other residues. Refine-

ments (rigid body, simulated annealing, energy minimizationand group B

factor) of the manually built model were performed with CNS (Brunger et al.,

1998; Brunger, 2007) using a NCS restriction among the 27 subunits in one

asymmetric unit. A negative B factor (DeLaBarre and Brunger, 2006)

(�100 Å2) was applied to sharpen the 2Fo-Fc map, which was further used

to rebuild the model and correct some errors. The final structure of rTAcpnb

in crystal Form I was refined to 3.8 Å with an Rwork of 36.5%, Rfree of

37.1%, and an overall figure of merit (FOM) of 0.66.

The crystal structure of rTAcpnb in Form II was solved bymolecular replace-

ment using themodel from Form I. After several rounds of refinements, B factor

sharpening with a negative B factor (DeLaBarre and Brunger, 2006) of �70 Å2

was applied to improve the electron density map, which was further used to

correct some residues. The structure of rTAcpnb in Form II was finally refined

to 3.7 Å with Rwork of 27.7%, Rfree of 28.3%, and an overall figure of merit

(FOM) of 0.78. The stereochemistry of the final model was checked using

the program PROCHECK (Morris et al., 1992) with the result that 80.9%

(369) of the residues are in most favored regions, 17.8% (81) are in allowed
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regions and 1.3% (6) are in generously allowed regions. The statistics for the

structural refinements are summarized in Table 1.

Protease K Digestion Assay

The assay buffer was 50mMTris-HCl [pH 7.4], 100mMKCl, and 25mMMgCl2.

Chaperonins (0.35 mg/ml) were incubated without or with ADP (1 mM), ATP

(1 mM), ADP (1 mM)/NaF (30 mM)/AlCl3 (5 mM), ATP (1 mM)/)/NaF (30 mM)/

AlCl3 (5 mM), respectively, for 20 min at 75�C. Then digestion with protease

K (20 ng/ml) was performed at 65�C for 5 min. Then PMSF (phenylmethylsul-

fonyl fluoride) was added into the mixture with final concentration 5 mM to

inhibit the digestion of protease K before the sample was analyzed on

12.5% SDS-PAGE. Gels were stained with Coomassie brilliant blue.

Structural Analysis and Illustration

All structural superposition calculations were performed using the ‘‘align’’

command in PyMol (DeLano, 2002). The solvent accessible surface areas

and interface areas of the thermosome subunits were calculated by the

program PISA (Krissinel and Henrick, 2007). The EM maps were segmented,

displayed, and fitted with crystal structures using UCSF Chimera (Pettersen

et al., 2004).

All structural figures were generated by UCSF Chimera (Pettersen et al.,

2004), Molscript (Kraulis, 1991), Bobscript (Esnouf, 1997), and PyMol (DeLano,

2002) as indicated.
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The rATcpnb negative staining electron microscopy density map and the
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were deposited in Electron Microscopy Data Bank (EMDB) with the access

number EMD-5154, EMD-5159, and EMD-5157, respectively. The rATcpn-
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Bank (PDB) with accession number 3KO1.
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