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A maximum likelihood reconstruction method for an asymmetric reconstruction of the infectious P22
bacteriophage virion is described and demonstrated on a subset of the images used in [Lander, G.C., Tang,
L., Casjens, S.R., Gilcrease, E.B., Prevelige, P., Poliakov, A., Potter, C.S., Carragher, B., Johnson, J.E., 2006. The
structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312(5781),
1791–1795]. The method makes no assumptions at any stage regarding the structure of the phage tail or
the relative rotational orientation of the phage tail and capsid but rather the structure and the rotation angle
are determined as a part of the analysis. A statistical method for determining resolution consistent with
maximum likelihood principles based on ideas for cylinders analogous to the ideas for spheres that are
embedded in the Fourier Shell Correlation method is described and demonstrated on the P22 reconstruc-
tion. With a correlation threshold of .95, the resolution in the tail measured radially is greater than
0:0301 Å

�1
(33.3 Å) and measured axially is greater than 0:0142 Å

�1
(70.6 Å) both with probability p ¼ 0:02.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Motivated by recent reconstructions from cryo electron micros-
copy (cryo EM) images of tailed bacteriophages epsilon15 (Jiang
et al., 2006) and P22 (Lander et al., 2006), alternative maximum
likelihood reconstruction and resolution calculation methodolo-
gies are described and demonstrated on the same P22 images used
in Lander et al. (2006). Maximum likelihood dates back to the early
1900s (Lehmann and Casella, 1998, Section 10.1, p. 515) but con-
tinues as an important method for deriving statistical estimators
in structural biology (e.g., Blanc et al. (2004) and McCoy et al.
(2005) in crystallography and Scheres et al. (2007) and Singh
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et al. (2004) in cryo EM). In comparison with the reconstruction
method described in Lander et al. (2006), the chief advantage of
the reconstruction method described in the present paper is its
ab initio character which manifests itself in two main differences:
First, it is not necessary to have a 3-D structure of the tail machine
before determining the 3-D structure of the tailed phage. Second,
although the 6-fold symmetric tail machine is attached at a 5-fold
symmetry axis of the capsid, it is not necessary to specify the rota-
tional position of the tail machine relative to the symmetry axes of
the capsid; Instead, all possible rotations, a range of 12 degrees
(please see Supplemental material, Section L), are considered by
the reconstruction method and the best is selected. Similar to the
results of Lander et al. (2006), the portal end of the tail shows
approximate 12-fold rotational symmetry even though no such
symmetry was imposed.

The approach of this paper can be applied to any tailed bacterio-
phage for which an icosahedrally symmetric structure can be
determined. If the tail is long and flexible, only the proximal part
of the tail will be resolved in the 3-D reconstruction. More gener-
ally, the approach can probably be applied to viruses where the
infection process results in a distinguished attachment site on
the surface of the virus which replaces the role of the tail. Such
problems are of current interest, e.g., in the case of polio virus,
Bubeck et al. (2005) and Zhang et al. (2008). Finally, the methods
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used in this paper show how maximum likelihood approaches can
be used for complicated structures by assembling the structure out
of parts and estimating parameters that determine the structure of
each part and the relative locations and orientations of the parts.
The computations required in this approach are moderately exten-
sive, e.g., best done on a set of tens of PCs. However, the computa-
tions are much less extensive than would be required for a
statistical ab initio 3-D reconstruction of the infectious bacterio-
phage (i.e., capsid, tail, and genome) since such a reconstruction
would be of a particle without any symmetry. Because the ap-
proach of this paper is based on combining an icosahedrally sym-
metric reconstruction with an n-fold symmetric tail reconstruction,
not all possible distortions of the capsid to accommodate the tail
can be represented. However, to the extent that the distortions of
the capsid which allow the joining of the tail are n-fold symmetric,
then the proximal part of the tail reconstruction will include those
distortions so that the sum of the icosahedrally symmetric recon-
struction and the n-fold symmetric tail reconstruction will accu-
rately reflect the structure of the tailed bacteriophage.

Relative to standard Fourier Shell Correlation (FSC) calculations
(please see van Heel and Schatz (2005) for new ideas on setting FSC
thresholds and an extensive bibliography of FSC investigations
containing 26 entries dating back to initial papers such as Frank
et al. (1981) and Saxton et al. (1982)), the resolution methodology
described in the present paper has several potentially attractive
features: (1) It is linked to the maximum likelihood criteria used
to determine the 3-D reconstruction algorithm. (2) It is possible
to measure resolution independent of orientation, as is appropriate
for spherical objects, or with respect to translations along and rota-
tions around a specific axis, as may be natural for a cylindrical
object such as the tail of a phage. (3) It is not necessary to perform
two reconstruction calculations each with half of the entire data
set. (4) It provides a probability of correctness, i.e., the answer is
of the form that resolution is greater than a particular number with
a certain probability.

The reconstruction method has three phases: (1) Use a standard
cryo EM reconstruction algorithm to compute an icosahedrally
symmetric reconstruction of the tailed phage. (2) Use the recon-
struction of Phase (1) to determine origin location and projection
orientation for each image by quadratic correlation. The projection
orientation is only determined up to one of the 60 rotations of the
icosahedral group, since the reconstruction of Phase (1) has icosa-
hedral symmetry. (3) Use a mathematical description of the tail,
the capsid reconstruction of Phase (1), the origin locations and pro-
jection orientations (up to a rotation from the icosahedral group) of
Phase (2), and the maximum likelihood criteria to determine a 3-D
reconstruction of the entire tailed phage. While the details of
Phases (1) and (2) are described in the numerical results (Section
3), the major portion of the reconstruction part of the present
paper concerns Phase (3) (Section 2).

The resolution method has two phases: (1) Compute the Hes-
sian of the log likelihood at the maximum likelihood parameter
estimates, i.e., compute the matrix of mixed second-order partial
derivatives of the log likelihood with respect to the parameters
evaluated at the particular vector of parameters that maximizes
the likelihood. As is described in Section 4.1, the parameter estima-
tion error, i.e., the difference between the true value of the param-
eter vector and the value determined by the maximum likelihood
estimator, is approximately Gaussian in distribution and the nega-
tive of the inverse of this Hessian is approximately the parameter
estimation error covariance matrix. (2) As is described in Section
4.4, use a Monte Carlo procedure to compute many FSC curves
where the structures compared by FSC are drawn at random from
the multivariate Gaussian probability density function (pdf) deter-
mined in Phase (1). From this ensemble of FSC curves, it is possible
to compute a histogram which approximates the pdf for the reso-
lution at which FSC first falls below any threshold, where the
threshold might depend on the magnitude of the reciprocal space
position, as is described in van Heel and Schatz (2005). From this
histogram it is possible to compute the probability that the resolu-
tion exceeds a particular value. For cylindrical objects, two alterna-
tives to FSC are described which are appropriate for measuring
axial and rotational resolution, respectively.

2. Reconstruction method

For further details of the reconstruction method, please see
Prust (2006).

2.1. Mathematical model for the phage capsid and tail

Real space coordinates are denoted by x with rectangular, cylin-
drical, and spherical coordinates denoted by ðx; y; zÞT , ðr; /; zÞ, and
ðjxj; h; /Þ, respectively. Correspondingly, reciprocal space coordi-
nates are denoted by k; ðkx; ky; kzÞ; ðkr ; /

0; kzÞ, and ðk; h0; /0Þ. The cap-
sid electron scattering intensity, denoted by qcðxÞ, is described in a
coordinate system in which the rotational symmetry axes intersect
at the origin of the coordinate system, the z axis is a 5-fold symmetry
axis, and the quadrant of the x—z plane that has x > 0 and z > 0 in-
cludes one of the five 2-fold symmetry axes closest to the positive
z axis (Yin et al., 2003; Altmann, 1957; Laporte, 1948). The tail elec-
tron scattering intensity, denoted by qtðxÞ, is described in a coordi-
nate system in which the long axis of the tail is the z axis of the
coordinate system and the end of the tail that attaches to the capsid
is the end at more positive z value. The entire particle is described in
the same coordinate system as the capsid. The electron scattering
intensity of the complete particle, denoted by qðxÞ, is therefore

qðxÞ ¼ qcðxÞ þ qtðx� dÞ ð1Þ

where

d ¼ ð0;0; ztÞT : ð2Þ

It is not necessary to consider rotation of the tail when attaching the
tail to the capsid because the mathematics to be used in the sequel
can represent the tail in any rotation around the z axis. It will be
convenient to assume that the tail is length-centered in the tail
coordinates, i.e., qtðxÞ is nonzero only in a symmetric region
�z0=2 6 z 6 þz0=2 ðz0 > 0Þ in which case zt 6 0.

Because of the cylindrical shape of the tail and the rotational
symmetry of the tail around its long axis, a cylindrical coordinate
system is used. Because the tail is by definition periodic with per-
iod 2p in /; qtðxÞ can be expressed as a Fourier series with radially-
and axially-dependent weights denoted by clðr; zÞ. Assuming that
the tail has a known maximum radius, denoted by Rþ, it follows
that the radial dependence of the weights can be expanded in a
sum of weighted Bessel functions in r. The axial dependence of
the weights can be expanded as a sum of weighted complex expo-
nentials in z. Assume that the tail has rotational symmetry of order
n (n ¼ 1 is permitted). It follows from Eqs. 185, 174, 180, and 92 in
the Supplemental material that

qtðr;/; zÞ ¼
Xþ1

l¼�1

X1
p¼1

Xþ1
n¼�1

cl;p;nqðzÞfnðzÞhl;pðrÞ expðiln/Þ ð3Þ

where cl; p; n are unknown complex-valued coefficients,

qðzÞ ¼
1; jzj 6 z0=2
0; otherwise

�
; ð4Þ

fnðzÞ ¼ exp ið2p=z0Þnzð Þ; ð5Þ

hl;pðrÞ ¼
0; r P Rþ
Jjlnjðcjlnj;pr=RþÞ; r < Rþ

(
; ð6Þ
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JlðxÞ is the lth Bessel function of the first type, and cl; p is the pth zero
of JlðxÞ. Since qðxÞ is real, it follows by Hermitian symmetry (see Eq.
179 in the Supplemental material) that cl; p; n has the symmetry

c�l;p;�n ¼ c�l;p;n: ð7Þ

Note that Eq. (7) implies that

I c0;p;0
� �

¼ 0 ð8Þ

where I indicates the imaginary part. The reciprocal-space repre-
sentation of the electron scattering intensity qtðxÞ is denoted by
PtðkÞ and is the 3-D Fourier transform of qtðxÞ which is defined by

PtðkÞ ¼
Z

qtðxÞ expð�i2pkT xÞdx: ð9Þ

It then follows from Eqs. 202, 203, 198, and 118 in the Supplemen-
tal material that

PtðkÞ ¼
Xþ1

l¼�1

X1
p¼1

Xþ1
n¼�1

Lt ðkr ;/
0 ;kzÞ;ðl;p;nÞcl;p;n ð10Þ

where

Lt ðkr ;/
0 ;kzÞ;ðl;p;nÞ ¼ Qðkz � n=z0Þ expðilnð/0 � p=2ÞÞHl;pðkÞ; ð11Þ

QðkzÞ ¼ z0sincðkzz0Þ; ð12Þ

Hl;pðkrÞ ¼
R2
þcjlnj;pJln�1ðcjlnj;pÞJjlnjð2pkrRþÞ

ð2pkrRþÞ2 � c2
jlnj;p

; ð13Þ

and sincðzÞ ¼ sinðpzÞ=ðpzÞ.
The reciprocal-space representation of the electron scattering

intensity of the capsid (complete particle), i.e., of qcðxÞ ½qðxÞ�, is de-
noted by PcðkÞ ½PðkÞ� and is the 3-D Fourier transform of
qcðxÞ ½qðxÞ� where the 3-D Fourier transform is defined by Eq.
(9). Eq. (1) implies that

PðkÞ ¼ PcðkÞ þ expð�i2pkT
dÞPtðkÞ: ð14Þ

Results related to the icosahedral average of the complete par-
ticle (capsid plus tail) are necessary in the approach of this paper.
The icosahedral group has Ng ¼ 60 operations each of which is a
rotation that can be expressed (for a specific coordinate system)
as a 3� 3 matrix. For b 2 f0; . . . ; Ng � 1g, let Sb 2 R3�3 be the
matrices which, since they are rotation matrices, satisfy S�1

b ¼ ST
b

and det Sb ¼ þ1. If a function f is rotated to yield a function f 0

and the rotation is described by the rotation matrix R then the def-
inition used in this paper is that f 0ðxÞ ¼ f ðR�1xÞ. With these preli-
minary results, the icosahedral average of the complete particle,
denoted by �qðxÞ, is

�qðxÞ¼: 1
Ng

XNg�1

b¼0

qðS�1
b xÞ ð15Þ

¼ 1
Ng

XNg�1

b¼0

qcðS
�1
b xÞ þ qtðS

�1
b x� dÞ

h i
ð16Þ

¼ qcðxÞ þ
1

Ng

XNg�1

b¼0

qtðS
�1
b x� dÞ ð17Þ

since qcðxÞ has icosahedral symmetry, i.e., qcðS
�1
b xÞ ¼ qcðxÞ for

b 2 f0; . . . ;Ng � 1g. The icosahedral average, �qðxÞ, also has icosahe-
dral symmetry, i.e., �qðS�1

b xÞ ¼ �qðxÞ for b 2 f0; . . . ; Ng � 1g. Let PðkÞ
be the reciprocal space representation of �qðxÞ. Eq. (17) implies that

PðkÞ ¼ PcðkÞ þ
1

Ng

XNg�1

b¼0

expð�i2pkT SbdÞPtðS�1
b kÞ: ð18Þ

As is described in Supplemental material Section B.6, the math-
ematics used in this paper does not uniquely represent the tail
since if cl; p; n represents the tail qtðxÞ then expð�il/0Þcl;p;n repre-
sents the same tail rotated around the z axis by the angle /0 where
/0 2 ½0;2pÞ is arbitrary. However, when the tail is attached to the
capsid, only 5 of these rotations are equivalent for the combination
of capsid and tail since only under the 5 rotations
/0 2 fn2p=5 : n 2 f0; . . . ; 4gg is the capsid unaltered since the z
axis is a 5-fold symmetry axis of the capsid.

2.2. Mathematical model for the image formation process and the
difference image

A standard image formation equation is used. Let riðvÞ be the
ith real-space image and RiðjÞ be the corresponding reciprocal
space image which is its 2-D Fourier transform defined analogously
to Eq. (9) where v 2 R2 and j 2 R2 are the 2-D coordinate vectors in
real and reciprocal space, respectively, where j¼: jjj and v¼: jvj. Let
v0; i be the offset between the location of the particle’s center in the
ith image and the center of the ith image. Let GðjÞ be the contrast
transfer function (CTF) (Baker et al., 1999, p. 873; Scherzer, 1949).
Let Ri be the rotation matrix that describes the orientation of the
particle in the microscope or, equivalently, the projection orienta-
tion. Then (Erickson, 1973, Eq. 11c; Yin et al., 2003, Eq. 10),

RiðjÞ ¼ expð�ijTv0;iÞGðjÞPðR
�1
i ðjT ;0ÞTÞ: ð19Þ

As is described in Section 1, the approach of this paper is based
on difference images where the difference is between the experi-
mental image and the predicted image where the prediction is
based on an icosahedrally symmetric reconstruction of the com-
plete particle. As a part of the reconstruction, estimates are made
of the origin offset for each image, the particle orientation for each
image, and the icosahedrally symmetric electron scattering inten-
sity. In this paper, the following assumptions are made:

1. The origin offset estimate, denoted by v̂0; i, is exact, i.e.,
v̂0; i ¼ v0; i.

2. The estimate of the rotation matrix describing the particle ori-
entation, denoted by bRi, is exact up to a rotation from the icosa-
hedral group, i.e.,bRi ¼ RiSbi

: ð20Þ

3. The estimate of the icosahedrally averaged electron scattering
intensity of the complete particle, denoted by q̂ðxÞ, is exact,
i.e., q̂ðxÞ ¼ �qðxÞ.

A predicted image is needed in order to form the difference im-
age and the natural predicted image, denoted by bRiðkÞ, isbRiðjÞ ¼ expð�ijT v̂0;iÞGðjÞbPðbR�1

i ðjT ;0ÞTÞ ð21Þ

¼ expð�ijTv0;iÞGðjÞP ðRiSbi
Þ�1ðjT ;0ÞT

� �
ð22Þ

¼ expð�ijTv0;iÞGðjÞP S�1
bi

R�1
i ðjT ;0ÞT

� �� �
ð23Þ

¼ expð�ijTv0;iÞGðjÞP R�1
i ðjT ;0ÞT

� �
ð24Þ

since PðkÞ has icosahedral symmetry.
The ith difference image, denoted by Diðj; RiÞ, is

Diðj;RiÞ¼RiðjÞ� bRiðjÞ ð25Þ

¼ expð�i2pjTv0;iÞGðjÞ PðR�1
i ðjT ;0ÞTÞ� bPðR�1

i ðjT ;0ÞTÞ
h i

ð26Þ

¼ expð�i2pjTv0;iÞGðjÞ expð�i2pðjT ;0ÞRidÞPtðR�1
i ðjT ;0ÞTÞ

h
� 1

Ng

XNg�1

b¼0

expð�i2pðjT ;0ÞRiSbdÞPtððRiSbÞ�1ðjT ;0ÞTÞ
i
: ð27Þ

Since the origin offset is known by Assumption 1, it is natural to as-
sume that the boxed images are shifted such that the origin offset in
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the shifted image is zero. In that case the factor expð�i2pjTv0;iÞ has
value 1. The icosahedral averaging that creates PðkÞ causes the sin-
gle tail to be replicated Ng ¼ 60 times in 12 groups of 5 with one
group at each 5-fold symmetry axis where each replication is at
1/60 the scattering intensity of the true tail. We refer to these rep-
licated low-scattering-intensity tails as ‘‘ghosts”. Let Rgðj; RiÞ
denote the ghost tail reciprocal-space image with definition

Rgðj; RiÞ ¼
1

Ng

XNg�1

b¼0

expð�i2pðjT ; 0ÞRiSbdÞPtððRiSbÞ�1ðjT ; 0ÞTÞ: ð28Þ

Note that

Rgðj; RiSbÞ ¼ Rgðj; RiÞ ð29Þ

for all b 2 f0; . . . ; Ng � 1g because the fSbg form a multiplicative
group. Using this definition, the difference image can be written as

Diðj; RiÞ ¼ expð�i2pjTv0;iÞGðjÞ expð�i2pðjT ; 0ÞRidÞPtðR�1
i ðjT ;0ÞTÞ

h
�Rgðj; RiÞ

i
ð30Þ

which describes the difference image as the superposition of the
true tail and the ghost tails.

2.3. Statistical model for the noisy images

The statistical model falls within the general class of models
described in Doerschuk and Johnson (2000) and Yin et al. (2003)
and only the main characteristics are briefly summarized here.
The central feature, and the key difference from the numerical
examples described in Doerschuk and Johnson (2000) and Yin
et al. (2003), is that the orientations of the particles are still inde-
pendent random variables but the probability density functions
(pdfs) for these random variables are not identical. In particular,
each particle has its pdf concentrated on the Ng ¼ 60 icosahedrally
related orientations that are the outcome of orienting the image of
a nonsymmetrical particle with predicted images of an icosahed-
rally symmetric particle. As is described in Section 2.2, it is
assumed that the difference boxed images are shifted if necessary
so that the center of the capsid is projected to the center of the
image. Therefore, there is no uncertainty in the location of the cen-
ter of the capsid in the image and so, in the notation of Doerschuk
and Johnson (2000) and Yin et al. (2003), vi; j ¼ ð0;0Þ

T . In the calcu-
lations described in this paper, we assume that there is only one
class of capsid and one class of tail. Therefore, in the notation of
Doerschuk and Johnson (2000) and Yin et al. (2003), Ng ¼ 1. This
restriction could be removed. The reciprocal space image is
assumed to be corrupted by additive zero-mean white Gaussian
noise with known variance r2. The variance is, in fact, estimated
from the images in a preliminary calculation.

Removing the one class restriction would require a precise def-
inition of how multiple classes occur. For instance, if the capsid has
only one class but the tail has multiple classes, then the following
generalization would be natural: (1) Merge all of the data to com-
pute an icosahedrally symmetric reconstruction. (2) Use the
icosahedrally symmetric reconstruction to compute difference
images. (3) Use a multiclass generalization of the algorithm
described in this paper, exactly following the multiclass algorithm
of Doerschuk and Johnson (2000), to reconstruct multiple tail
structures. Alternatively, if the capsid has multiple classes but only
one possible tail exists, then the following generalization would be
natural: ð10Þ Use the multiclass algorithm of Doerschuk and John-
son (2000), to reconstruct multiple icosahedrally symmetric struc-
tures and label each image with its estimated class. ð20Þ Based on
the estimated class label, compute difference images using the
appropriate icosahedrally symmetric reconstruction. ð30Þ Apply
the algorithm described in this paper to the difference images to
determine a reconstruction of the single class of tail. Finally, if
there are multiple classes of capsid and multiple classes of tail
and all possible mixtures of capsid and tail are present in the data,
then a combination of these two generalizations would be neces-
sary, in particular, ð10Þ; ð20Þ, and (3).

Let the ith difference image be arrayed in a vector denoted by yi.
Let the unknown coefficients, cl; p; n, be arrayed in a vector denoted by
c. Let the additive pixel noise for the ith difference image be arrayed
in a vector denoted by wi which is, therefore, Gaussian with mean 0
and covariance Qi ¼ r2INy where Ny is the number of pixels in the
image. From Eq. (30), the ith difference image depends linearly on
PtðkÞ. From Eq. (10), PtðkÞ depends linearly on the unknown coeffi-
cients cl;p;n (which are the elements of the vector c). Therefore, there
is a matrix, which is denoted by LD, that relates the ith difference im-
age to the unknown coefficients cl; p; n (which are the elements of the
vector c). (In Eq. (11) the elements of the simpler matrix relating
PtðkÞ to c, where c has elements cl;p;n, is shown explicitly). The matrix
depends on the identity of the image, i.e., on i, because it depends on
the orientation of the particle, i.e., on Ri. The matrix also depends on
random variables, such as which of the Ng ¼ 60 icosahedrally re-
lated orientations is present, and the collection of such random vari-
ables for the ith image is denoted by zi. In the calculations of this
paper, the only random variables on which the matrix depends are
the orientations and therefore, the integrals in Eqs. (35)–(37) are
actually discrete sums though in more general problems the matrix
could depend on additional variables such as translations in which
case the integrals would not reduce to discrete sums. The conclusion
of this paragraph is that there is an equation,

yi ¼ LDði; ziÞc þwi; ð31Þ

analogous to Doerschuk and Johnson (2000, p. 1718) and Yin et al.
(2003, Eq. 19, p. 31), which describes the entire imaging system.

2.4. Maximum likelihood reconstruction method and expectation-
maximization algorithm

Use of the maximum likelihood estimation ideas and formulas of
Doerschuk and Johnson (2000) and Yin et al. (2003) allows a recon-
struction of the tail by estimating values for the unknown cl;p;n coef-
ficients which in turn specify the tail through Eq. (3). With the value
of the matrix LD and the pdfs for the random variables on which LD

depends, both new in this paper for this application, the algorithm
is as follows. First, pre-compute the following quantities:

aiðyi; ziÞ ¼
XNT ðiÞ

j¼1

ln ð2pÞNy=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Qi;jðziÞ

qh i
þ 1

2
yT

i;jQ
�1
i;j ðziÞyi;j

� �
ð32Þ

biðyi; ziÞ ¼
XNT ðiÞ

j¼1

LT
Dði; j; ziÞQ�1

i;j ðziÞyi;j ð33Þ

DiðziÞ ¼
XNT ðiÞ

j¼1

LT
Dði; j; ziÞQ�1

i;j ðziÞLDði; j; ziÞ ð34Þ

where, for the ith virion, these equations allow NTðiÞ tilt images, de-
noted by yi;j, to be processed and allow the pixel noise covariance
Qi;j and LD to depend on both the virion index i and the tilt series
index j. These quantities allow rapid evaluation of a Gaussian pdf
which is the product of NTðiÞ independent Gaussian pdfs with
means LDc the covariances Qi;j which is the pdf needed in the expec-
tation of the expectation-maximization algorithm (zi are the so-
called nuisance parameters of the algorithm). Second, determine
an initial condition for the values of the cl;p;n coefficients. In the
numerical results presented in Section 3, that initial condition is
random as is described in Section 3.1. Third, starting at this initial
condition, iterate the following actions until the values of the cl;p;n

coefficients have converged.



Fig. 1. Examples of accepted and rejected P22 images. (a and b) Show a pair of P22
images that were included in the 3-D reconstruction while (c and d) show images
that were rejected.

4 All 2-D images (boxed images, cross sections, etc.) in this paper were made with
Matlab (http://www.mathworks.com/) and all 3-D surface plots were made with the
Spider/Web system (Frank et al., 1996).

5 http://www.mathworks.com/.
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1. Compute

ciðc0; yiÞ ¼
Z

zi

pðyijzi; c0ÞpðziÞdzi ð35Þ

biðc0; yiÞ ¼
Z

zi

biðyi; ziÞpðyijzi; c0ÞpðziÞdzi ð36Þ

Diðc0; yiÞ ¼
Z

zi

DiðziÞpðyijzi; c0ÞpðziÞdzi ð37Þ

where c0 is the current value of the vector constructed from the cl;p;n

coefficients.
2. Combine these results to compute

g ¼
XNv

i¼1

1
ciðc0; yiÞ

biðc0; yiÞ ð38Þ

F ¼
XNv

i¼1

1
ciðc0; yiÞ

Diðc0; yiÞ: ð39Þ

where Nv is the number of virions, i.e., the number of images if each
virion has a tilt series containing only one image.
3. Solve the linear system

Fc ¼ g ð40Þ

for the vector c which is the new value of the vector constructed
from the cl;p;n coefficients.

Action 1 evaluates the expectations of the expectation-maxi-
mization algorithm while Actions 2 and 3 evaluate the maximi-
zation of the expectation-maximization algorithm where the
function that must be maximized turns out to be a quadratic
form in c so the location of the maximum can be computed by
solving a linear system, i.e., Eq. (40). These calculations general-
ize immediately to the case where each virion is from one of a
finite number of different classes and the class label for the vir-
ion shown in a particular image is not known (Doerschuk and
Johnson, 2000; Yin et al., 2003). Because the approach of this
paper is based on difference images (Eq. 30), multiclass algo-
rithms require care that the image and the prediction of the
image used to compute the difference image come from the
same class and three multiclass situations and algorithms are
described in the second paragraph of Section 2.3.

2.5. Parallel computation methods

The calculations implied by the algorithm described in this
paper are large and so efficiency and parallel computing on a
cluster of commodity PCs has been critical. Prust (2006, Section
2.2.6, pp. 19–21) provides methods based on Eq. (7) that allow
fast computation of Lt and therefore of LD. The parallel software
is based on modifications of the software described in Zheng
(2002). The modifications are the new LD and the new pdfs for
the random variables zi on which LD depends. (In the calcula-
tions reported in this paper, the zi are the orientation parameters
for each image and take 1 of 60 values for each image but the
possible values differ from image to image. For each image,
the pdf on the zi is uniform over the possible values for that
image). With regard to the pdfs, the key modification, a general-
ization, is to provide a different pdf for each difference image.
This has major implications for the storage footprint of the soft-
ware, specifically the storage required for the D matrices (Eq.
34), which will be returned to in Section 5.

3. Numerical results 1: The reconstruction of P22

For further details concerning the reconstruction of P22, please
see Prust (2006).
3.1. Practical issues

The boxed images were hand selected based on absence of adja-
cent particles, broken particles, or junk in the image. No preference
was given to images based on the visibility of the tail. Fig. 14 shows
samples of both accepted images and discarded images. No mask-
ing of the images was performed because of the difficulty of
designing a procedure that did not mask side-pointing tails.

The selected images were oriented, modulo a rotation from the
icosahedral group, and centered by quadratic correlation. A library
of 5000 reference images with projection directions uniformly dis-
tributed through the asymmetric unit of the icosahedral group was
computed by Spider (Frank et al. (1996)) using command PJ3Q

from a high-resolution icosahedrally symmetric reconstruction of
the capsid of P22 (Lander et al. (2006)). The rest of the processing
was performed in Matlab.5 For each boxed image, estimates of the
orientation (modulo a rotation from the icosahedral group) and
origin offset are computed by maximizing the normalized qua-
dratic correlation between the boxed image at a variety of shifts
and the reference images each with a different orientation. Let
rref

i ðvÞ denote the ith reference image and hence the ith orientation
and let v0 denote the origin offset. Let rðvÞ denote one of the boxed
images. The estimates for that boxed image are

î; v̂0 ¼ arg max
i2f1;...;5000g;v02fðm1D;m2DÞT :m1 ;m22f�mmax ;...;þmmaxgg

J1ðr;rref
i ; v0Þ ð41Þ

where

J1ðr;rref
i ;v0Þ¼

P
v

rðv�v0Þrref
i ðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v

r2ðvÞ
" # P

v

rref
i ðvÞ

� �2

" #vuut ; ð42Þ

http://www.mathworks.com/
http://www.mathworks.com/


Fig. 2. Generation of difference images for the P22 reconstruction. (a and d) Show a pair of raw P22 images. (b and e) Show the corresponding reference image from the 5000
image library. (c and f) Show the resulting difference images using the optimal gains.

Table 1
Parameters at each step of the reconstruction algorithm. �lmax; pmax, and �nmax are
the truncation limits for the infinite sums in the tail model (Eq. 3 or equivalently Eq.
10). Nc is the total number of cl;p;n coefficients.

Step lmax pmax nmax Nc

1 1 3 1 27
2 1 3 3 63
3 1 5 3 105
4 1 5 5 165
5 1 7 5 231
6 2 7 5 385
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D is the image sampling interval, and mmax ¼ 2.
Difference images were computed by subtracting the reference

image from the shifted boxed image after computing, by least
squares, an optimal gain to apply to the reference image in order
to compensate for the unknown scaling of the boxed image. The
optimal gain for a particular boxed image, denoted by ĝ, is the gain
that minimizes a cost function, denoted by J2:

ĝ ¼ arg min
g

J2ðg;r;rref
î
; v̂0Þ ð43Þ

where

J2ðg;r;rref
î
; v̂0Þ ¼

X
v

rðv� v̂0Þ � grref
î
ðvÞ

h i2
: ð44Þ

The calculation of ĝ can be done explicitly in terms of r;rref
î

, and v̂0.
Fig. 2 shows sample difference images for the P22 reconstruction.

Expectation-maximization is an iterative algorithm that requires
an initial condition. As is described in more detail in Supplemental
material Section C, the calculations described in this paper used ran-
dom initial conditions computed in two steps. First, compute pseudo
random variables c0l;p;n 2 R from a pdf which is uniform on the inter-
val ½�x;þx� subject to the energy constraint that

x2=4 6
Xþ1

l¼�1

X1
p¼1

Xþ1
n¼�1

½c0l;p;n�
2
6 3x2=2: ð45Þ

Second, set cl;p;n equal to c0l;p;n for those values of ðl;p;nÞwhere cl;p;n 2 R

(please see Eq. 8) and set cl;p;n equal to c0l;p;n expðinl;p;nÞ for the remain-
ing values of ðl; p;nÞwhere nl;p;n are pseudo random variables from a
pdf which is uniform on the interval ½0; 2p�. The value of x was set
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00002
p

which yielded satisfactory performance. Because expec-
tation-maximization is guaranteed only to converge to a local maxi-
mum of the likelihood function, a multi-start optimization was
performed in which 99 initial conditions were tested and the best an-
swer, i.e., the answer with highest likelihood, was retained.

Similar to most cryo EM and X-ray crystallography reconstruc-
tion algorithms, the resolution of the reconstruction is increased in
a series of steps. Resolution of the model is controlled by truncat-
ing the l; p, and n sums in Eq. (3) or equivalently Eq. (10)
to �lmax 6 l 6 lmax;1 6 p 6 pmax, and �nmax 6 n 6 nmax. Table 1 lists
the values of lmax; pmax, and nmax for each step and the correspond-
ing number of cl;n;p coefficients, denoted by Nc. The multi-start
optimization described in the previous paragraph was used for
Step 1 and the answer from Step 1 was the best of the multi-start
answers. In Steps 2–6, the single initial condition was always the
answer from the previous step augmented with additional cl;p;n

coefficients with value 0.
In Steps 1 and 2 the difference image is predicted by Eq. (30)

which includes both the true tail and the ghost tails. However, in
Steps 3–6, in order to save computation, the ghost tails are omit-
ted, i.e., Rgðj; RiÞ is deleted from Eq. (30).

The parameters for the reconstruction were as follows: A total
of Nv ¼ 276 images were used. Each image had a sampling interval
of D ¼ 4:04Å=pixel and measured 288� 288 pixels. The CTF was
unity. The cylinder containing the tail had radius Rþ ¼ 130Å and
length z0 ¼ 380Å. The symmetry of the tail was n ¼ 6 fold rota-
tional symmetry. The tail coordinate system was displaced by
zt ¼ �380Å from the capsid coordinate system which is the same
as the whole-particle coordinate system. (Recall that the tail is
nonzero in the tail coordinate system for the region
�z0=2 6 z 6 þz0=2 and that the capsid, tail, and whole-particle
coordinate systems are described in Eqs. (1) and (2)).

3.2. The 3-D cube

Fig. 3 shows the final answer (i.e., Step 6) of the reconstruction
at a single viewing angle but at various contour levels. Fig. 4 shows
cross sections through the final answer (i.e., Step 6). Fig. 5 shows
two views of the assembled P22 virus structure. Supplemental



Fig. 3. Final P22 tail reconstruction (i.e., Step 6) rendered at increasing contour levels from left to right.

Fig. 4. Cross sectional plots in the x–y plane of the final P22 tail reconstruction (i.e., Step 6). The cross sections are at distances 240, 380, and 530 Å from the center of the
capsid in (a–c), respectively, which implies that (a–c) show cross sections of the tail near the portal end of the tail, the midpoint of the tail, and 40 Å proximal to the free end of
the tail, respectively. (d) Shows the coordinate system which is described in Section 2.1. In summary, the rotational symmetry axes of the icosahedral symmetry intersect at
the origin of the coordinate system, the z axis is a 5-fold symmetry axis, the quadrant of the x� z plane that has x > 0 and z > 0 includes one of the five 2-fold symmetry axes
closest to the positive z axis (Yin et al., 2003; Altmann, 1957; Laporte, 1948) and the tail extends in the negative z direction. The lines marked ‘‘2” are the projections onto the
x–y plane of the icosahedral 2-fold symmetry axes that are closest to the negative z axis where the tail is located.
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material Section D contains additional figures showing the 3-D
real-space reconstruction of the tail. Supplement Fig. 12 shows
the resulting structure at each step of the reconstruction process
(see Table 1). Supplement Fig. 13 shows the final answer (i.e., Step
6) from various viewing angles. Note that there is no ambiguity in
the relative location and orientation of the tail and capsid struc-
tures since the tail coordinate system is locked to the capsid coor-
dinate system and because the tail reconstruction algorithm can
reconstruct the tail in any rotation as implied by the data. The fact
that the tail is not rotationally blurred demonstrates that the tail
structure attaches to the capsid in a specific way (i.e., the 6-fold
symmetric tail specifically connects to the 5-fold symmetric cap-
sid). The resolution of the reconstruction is presented in Section 5.
3.3. The angle between a tail spike and the icosahedral symmetry axes

The mathematics used in this paper can represent a n-symmet-
ric tail independent of the rotation of the tail around the z axis rel-
ative to the capsid. Therefore, the rotational relationship between
the protein molecules in the tail and the icosahedral symmetry
of the capsid can be determined free of any initial assumptions.

One method to visualize the rotational relationship is to select a
region of z values and integrate qðxÞ over this region to create a 2-
D averaged cross sectional real-space image of the tail. Assume
that the region of z is specified in the tail coordinate system (which
is displaced by zt from the complete particle coordinate system as
is shown in Eqs. (1) and (2)) by �z0=2 6 z� 6 z 6 zþ 6 z0=2. The



Fig. 5. 3-D reconstruction of the complete P22 virus structure. Side and end-on
views are shown in (a and b), respectively. Note that the rotational uncertainty in
assembling the capsid and tail structures was uniquely determined by the tail
reconstruction algorithm.
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integral can be done analytically because the only factor of Eq. (3)
that must be integrated is fnðzÞ and that integral has the value
(please see Supplemental material Section G, Eq. 209)Z zþ

z¼z�

fnðzÞdz ¼ z0

pn
exp ipnðzþ þ z�Þ=z0ð Þ sin pnðzþ � z�Þ=z0ð Þ: ð46Þ

Alternatively, a 3-D real-space cube, such as is visualized in Section
3.2, can be summed in the z direction over the appropriate subset of
planes to create an averaged 2-D cross sectional real-space image of
the tail.

Taking the second approach, Fig. 6 shows averaged cross sec-
tions of the real-space 3-D cube visualized in Fig. 3 and Fig. 12(f)
(Supplementary material) and Fig. 13 in which the sampling inter-
val is 2 Å in all three coordinates. Specifically, Fig. 6(a) shows the
sum of planes between z� ¼ 120Å and zþ ¼ 150Å in the tail coordi-
nate system (�260Å and �230Å in the total particle coordinate)
and Fig. 6(b) shows the sum of planes between z� ¼ �100Å and
zþ ¼ 50Å in the tail coordinate system (�480Å and �330Å in the
total particle coordinate system) where the center of the capsid
is at the origin in the total-particle coordinate system. Fig. 6(a
and b) correspond to the portal-end and mid-tail portion of the tail
structure, respectively. The image shown in Fig. 6(b) shows the 6-
fold symmetric locations of the protein molecules that make up the
tail as present in the mid-tail portion of the structure. The center of
mass of the molecule closest to the x axis in the positive rotational
direction is 33.74� from the x axis. Fig. 6(a) shows similar informa-
tion for the portal end of the structure. Here, in addition to the ex-
act 6-fold symmetry, there is an approximate 12-fold symmetry,
also seen in Lander et al. (2006), that was not imposed on the
structure. The center of mass of the molecule closest to the x axis
in the positive rotational direction is 0.83� from the x axis. As dis-
cussed in the final paragraph of Section 2.1, the structure described
here is in one of 5 equivalent coordinate systems where the 5 sys-
tems are related by rotations by 2pn=5 ðn 2 f0; . . . ;4gÞ around the
z axis. If the coordinate system is chosen in order to make these an-
gles as small as possible, which is a way to make the angles unique,
then 33.74� becomes 9.74� and 0.83� is unaltered.

The diagrams shown in Fig. 6(c and d) display the relation-
ships between the molecules at the portal-end or the mid-tail
portion of the tail structure and the icosahedral symmetries of
the capsid structure. Specifically, the diagrams show the x and
y axes, the centers of mass of the six (Fig. 6c) or 12 (Fig. 6d)
molecules, and the x–y projection of the five 2-fold rotational
symmetries of the capsid icosahedral symmetry that lie closest
to the negative z axis, i.e., lie closest to the attachment point
of the tail. Essentially the same information is provided in
Fig. 4B of Lander et al. (2006). Given the small range of angles
that are relevant (as is shown in Supplemental material Section
L, the range of angles is 6� for 12-fold and 12� for 6-fold) and
the inaccuracies of the structures, these angles appear to support
those of Lander et al. (2006). Unlike the method of Lander et al.
(2006), in which a 3-D structure for the tail machine is attached
at a specific arbitrary rotation angle relative to the capsid sym-
metry axes and then the combined capsid-tail structure is
refined, in the approach described in this paper no assumption
about this angle is ever made at any stage of the algorithm
and so this is an ab initio determination of the value of the
angle. The reason that no value for this angle is ever assumed
is that the mathematics used to represent the tail can represent
the tail in any rotational position as is described in the final par-
agraph of Section 2.1.

At any cross sectional level, by using the maximum likelihood
estimation error ideas of Section 4.1 and Monte Carlo ideas analo-
gous to those of Section 4.4 to compute many structures and there-
fore many averaged cross sections of the tail, it would be possible
to determine statistical information about the location of the mol-
ecules in the cross section of the tail. For instance, such statistical
information might be the 2� 2 covariance matrix describing the
uncertainty in the center of mass location or a histogram describ-
ing the uncertainty in the angle. Given the level of precision with
which this angle can be determined, these calculations would not
provide substantial additional insight.
4. Resolution methods

A standard definition of resolution is based on the Fourier
Shell Correlation (FSC) function (van Heel, 1987, Eq. 2; Harauz
and van Heel, 1986, Eq. 17; Baker et al., 1999, p. 879) which



Fig. 6. Averaged cross sections of the tail (a and b) and the relationships between the tail molecules and the icosahedral capsid symmetries (c and d). (a): Averaged cross
section near the portal end of the tail, specifically, averaged over distances of 230–260 Å from the center of the capsid. The 6-fold symmetry is exactly present. An
approximate 12-fold symmetry is also present. (b): Averaged cross section near the midpoint of the tail, specifically, averaged over distances of 330–480 Å from the center of
the capsid. The 6-fold symmetry is exactly present. No approximate 12-fold symmetry is present. (c): An abstraction of (a) showing the centers of mass of the twelve
molecules (marked ‘‘12”) and the projection onto the x–y plane of the five icosahedral 2-fold symmetry axes that are closest to the negative z axis where the tail is located. The
angle from the x axis to the closest center of mass in the positive angular direction (marked ‘‘12*”) is 0.83�. (d): An abstraction of (b) showing the centers of mass of the six
molecules (marked ‘‘6”) and the projection onto the x–y plane of the five icosahedral 2-fold symmetry axes that are closest to the negative z axis where the tail is located. The
angle from the x axis to the closest center of mass in the positive angular direction (marked ‘‘6*”) is 33.74�. The coordinate system is described in Section 2.1 and summarized
in Fig. 4.
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compares the reciprocal-space scattering densities of two struc-
tures. The purpose of FSC, as described for instance in Saxton
et al. (1982) (starting on p. 131 line 17), is to determine how
the image noise effects the 3-D reconstruction where the deter-
mination is done in 3-D reciprocal space as a function of the
magnitude of the spatial frequency vector. In the standard
approach, this determination is made by comparing two 3-D
reconstructions made from nonoverlapping subsets of the avail-
able images. In the approach described here, this determination
is made based on the shape of the likelihood function at the
maximum where the shape is measured as the matrix of mixed
second-order partial derivatives of the log likelihood function
with respect to the parameters evaluated at the parameter val-
ues that maximize the likelihood function. In the approach
described here, the goal is to compute the probability density
functions (pdfs) of certain random variables. We are not able
to perform these calculations symbolically. Therefore, we use
Monte Carlo methods to compute histograms which approximate
the pdfs. So, while the Monte Carlo methods are important to
implement our approach, they are not intrinsic to our approach.

Let PaðkÞ and PbðkÞ be the two reciprocal-space scattering den-
sities to be compared. The FSC function [denoted by pFSCðkÞ] is a
function of the magnitude of the reciprocal-space frequency vector
ðkÞ and is defined by
pFSCðkÞ¼
:

R
PaðkÞ PbðkÞ

h i�
dX0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

jPaðkÞj2dX0
R
jPbðkÞj2dX0

q ð47Þ

¼
SX0

Pa ;Pb ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SX0

Pa ;Pa ðkÞSX0

Pb ;Pb ðkÞ
q ð48Þ

where dX0 is integration over the angles of spherical coordinates
(i.e.,

R
dX0 ¼

R 2p
/0¼0

R p
h0¼0 sinðh0Þdh0d/0 where h0 and /0 are the angles

of spherical coordinates in reciprocal space) and

SX0

Pa ;Pb ðkÞ¼:
Z

PaðkÞ PbðkÞ
h i�

dX0 ð49Þ

for any pair of reciprocal-space functions PaðkÞ and PbðkÞ. Note that
pFSCðkÞ is real valued because qðxÞ is real valued and that
jpFSCðkÞj 6 1 by the Cauchy–Schwarz inequality. The two structures,
PaðkÞ and PbðkÞ, are often the reconstructions based on even and
odd numbered images, respectively. Once the FSC has been com-
puted, the resolution is defined as the smallest value of k such that
pFSCðkÞ is less than a threshold which may depend on k (van Heel
and Schatz, 2005).

Our interest is a resolution measure with the following
properties:
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1. The resolution measure distinguishes between axial and radial
directions because that distinction is intrinsic in the mathemat-
ics used in this paper, e.g., the cutoff for the n sum versus the l
and p sums in Eq. (3) influence axial versus radial directions.

2. The resolution measure is related to the maximum likelihood
criteria used to compute the reconstruction.

3. The resolution measure attaches a probability to its results,
analogous to the probability included in tests like t tests.

4. The resolution measure provides the resolution of the recon-
struction based on the full set of images rather than by compar-
ing two probably lower resolution reconstructions based on
even and odd numbered images, respectively.

In the remainder of this section a statistical version of FSC is
described, suitable for separate axial and radial resolution mea-
sures, that is based on the general theory of errors in maximum
likelihood estimation. As described above for standard FSC, it is still
necessary to have a threshold and the ideas described do not
include new ideas about the specification of the threshold. How-
ever, all current threshold ideas of which we are aware, including
k dependent thresholds such as those advocated by van Heel and
Schatz (2005), can be used.

4.1. General theory of estimation error covariance for maximum
likelihood estimators

The standard theory (Efron and Hinkley, 1978) for the estimator
error covariance of a maximum likelihood estimator is described in
this section. Let y be the vector of data and c be the vector of
unknown parameters. Let the estimate of c, which is a function
of y, be denoted by ĉðyÞ. Let the Hessian of the log likelihood func-
tion, the matrix of mixed second-order partial derivatives of the log
likelihood function, be denoted by HðcÞ with i; jth element defined
by @2 ln pðyjcÞ=@ci@cj where pðyjcÞ is the conditional probability
density function on the data y given the unknown parameters c.
Let c� be the true value of the parameters. The key result (Efron
and Hinkley, 1978) is that the estimation error, ĉðyÞ � c�, is approx-
imately Gaussian distributed with mean vector 0 and covariance
matrix �½HðĉðyÞÞ��1.

4.2. A simpler example

In this section the general theory of Section 4.1 is demonstrated
on the simpler example of Yin et al. (2003, Section 2.1) both to pro-
vide intuition and to demonstrate the accuracy of the general the-
ory. Demonstrating the accuracy in almost any nonlinear problem
requires Monte Carlo simulation and hence can only be done on
simpler problems.

The simple example is to assume that each experiment pro-
duces a data point, denoted by ym, which is the sum of a random
variable, denoted by Lm, times the unknown quantity, denoted by
c, plus a noise denoted by nm:

ym ¼ Lmc þ nm: ð50Þ

The integer m 2 f1; . . . ;Nmg is an index describing independent real-
izations of the experiment. The quantities ym; Lm; c, and nm are all real
numbers. The goal is to estimate the value of c from all of the ym
data. Note the similarity with the cryo EM situation (Eq. 31). As-
sume that the sets of random variables fLm : m 2 f1; . . . ;Nvgg and
fnm : m 2 f1; . . . ; Nvgg are independent of each other, that the
sequence of random variables Lm is independent and identically dis-
tributed according to a Gaussian pdf with mean mz and variance r2

z ,
and that the sequence of random variables nm is independent and
identically distributed according to a Gaussian pdf with mean 0
and variance r2. Then, by direct computation (Yin et al., 2003, Eq.
C14), the log likelihood function is
ln pðyjcÞ ¼ �Nv

2
ln c2r2

z þ r2	 

� Nv

2
ln 2pð Þ � 1

2
1

c2r2
z þ r2

�
XNv

m¼1

ðym � cmzÞ2 ð51Þ

and it is possible to show (Yin et al., 2003, Eqs. 5–7)that the maxi-
mum likelihood estimate of c, denoted by ĉ, is one of the three roots
of the polynomial

0 ¼ �c3r4
z � c2mzr2

z
�yþ c r2

z ry � r2ðr2
z þm2

z Þ
� �

þmzr2�y ð52Þ

where

�y ¼ 1
Nv

XNv

m¼1

ym ð53Þ

ry ¼
1

Nv

XNv

m¼1

y2
m : ð54Þ

The Hessian required by the general theory is just the negative of
the inverse of the second derivative with respect to the unknown
c because c is a single real number. Starting from Yin et al. (2003,
Eq. C15), the second derivative can be computed directly for arbi-
trary value of c with the result that

@2 ln pðyjcÞ
@c2 ¼

�Nv

ðc2r2
z þ r2Þ3

�r6
z c4 þ r2

z r4 þ 3r4
z ryc2 � r2

z ryr2 � 2r4
z c3mz�y

þ6r2
z cmz�yr2 � 3r2

z c2m2
z r2 þm2

z r4

" #
:ð55Þ

Each iteration of Monte Carlo (indexed by the integer t) includes the
following computations:

1. Compute Nv pairs of pseudo-random variables Lm and nm drawn
from the pdfs described previously.

2. Compute Nv measurements ym from Eq. (50).
3. Compute �y and ry from Eqs. (53) and (54), respectively.
4. Compute the coefficients and then the three roots of the poly-

nomial described by Eq. (52).
5. Among the real roots of Step 4, the estimate, denoted by ĉðtÞ, is

the root that maximizes the log likelihood given by Eq. (51).
Since the polynomial is of third order, at least one real root is
guaranteed.

6. Using Eq. (55), compute the Hessian at the estimate ĉðtÞ and
denote the result by hðtÞ. The value �1=hðtÞ is the estimate of
the estimation error covariance.

7. Compute the true error, denoted by dðtÞ and defined by
dðtÞ ¼ c � ĉðtÞ.

The Monte Carlo estimates of the mean and variance of the error
after T Monte Carlo iterations are the sample mean and variance of
the dðtÞ values, specifically,

�d¼: 1
T

XT

t¼1

dðtÞ ð56Þ

s2¼: 1
T

XT

t¼1

dðtÞ � �d
� �2

; ð57Þ

respectively.
Consider a case where the true value of c is 5.0,

Nv ¼ 100;mz ¼ 2:0;rz ¼ 0:1, and r ¼ 0:3. Based on T ¼ 106 Monte
Carlo iterations, the Monte Carlo estimate for the mean and vari-
ance of the estimation error are �d ¼ 0:000120 and s2 ¼ 0:000849.
In addition, the histogram of the T different estimation error vari-
ance results from the general theory of Section 4.1, i.e., the T differ-
ent values of the covariance estimate �1=hðtÞ computed from the
Hessian hðtÞ, are shown in Fig. 7. The fact that the histogram is
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Fig. 7. The histogram of results from the general theory of Section 4.1, i.e., the
histogram of different values of �1=hðtÞ where hðtÞ is the Hessian. The Monte Carlo
estimate for the mean and variance of the estimation error are �d ¼ 0:000120 and
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the histogram is 0.000847) and is narrow (the square root of the sample variance of
the histogram is 7:253� 10�6) demonstrating the high quality of the general theory
in this specific example.
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Fig. 8. The variance of the estimation error, i.e., s2, computed by Monte Carlo using
103 trials and the approximate variance based on the general theory for maximum
likelihood estimators, i.e., �1=hðtÞ, both as a function of standard deviation of the
noise corrupting the data, i.e., r. Note that �1=hðtÞ accurately tracks s2 and both
have a strong dependence on the noise in the original data, which is described by
the standard deviation r.
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narrow and is centered around s2 ¼ 0:000849 demonstrates the
accuracy of the general theory of Section 4.1 on a problem that
resembles a scalar version of the cryo EM problem.

The calculation described in the previous paragraph and Fig. 7
does not make clear how the measure of performance proposed
in this paper depends on the SNR of the original data. Therefore,
in Fig. 8 are plotted the Monte Carlo variance of the estimation
error, i.e., s2, (based on 103 Monte Carlo trials) and the result
of the general theory for maximum likelihood estimators, i.e.,
�1=hðtÞ, as a function of the SNR of the original data. The parame-
ters are the same as in the previous paragraph except that r varies
in order to vary the SNR of the original data. The fact that �1=hðtÞ
tracks s2 accurately as the SNR changes and the fact that both
change dramatically as the SNR improves illustrate the high quality
of the general theory for this specific example and the fact that the
general theory is really about how SNR of the data influences SNR
of the estimates.

4.3. Fourier Axial Correlation (FAC) and Fourier Radial Correlation
(FRaC) for cylindrical objects

As shown in Eq. (47), the standard FSC quantity is an integration
over the two angles of spherical coordinates. For a cylindrical
object, especially when the resolution can be independently con-
trolled in the axial and radial directions, it is natural to consider
integrations over various combinations of cylindrical coordinates.
If the integration is taken over cylindrical shells of reciprocal space,
i.e., /0 and kz, then the criteria is called Fourier Radial Correlation
(FRaC)6 and is denoted by pFRaCðkrÞ and the criteria measures radial
resolution. Alternatively, if the integration is taken over cross sec-
tional planes of reciprocal space, i.e., /0 and kr , then the criteria is
called Fourier Axial Correlation (FAC) and is denoted by pFACðkzÞ
and the criteria measures axial resolution. Define the integrals over
cylindrical shells and over cross sectional planes, both in reciprocal
space, by
6 ‘‘FRaC” is used in order not to conflict with Fourier Ring Correlation which is
abbreviated FRC.
S/0 ;kz

Pa ;Pb ðkrÞ¼
:
Z þ1

kz¼�1

Z 2p

/0¼0
PaðkÞ PbðkÞ

h i�
d/0dkz ð58Þ

S/0 ;kr

Pa ;Pb ðkzÞ¼:
Z 1

kr¼0

Z 2p

/0¼0
PaðkÞ PbðkÞ

h i�
d/0krdkr ð59Þ

for any pair of reciprocal-space functions PaðkÞ and PbðkÞ. Then FRaC
and FAC are defined by

pFRaCðkrÞ¼:
S/0 ;kz

Pa ;Pb ðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S/0 ;kz

Pa ;Pa ðkÞS/0 ;kz

Pb ;Pb ðkrÞ
q ð60Þ

pFACðkzÞ¼:
S/0 ;kr

Pa ;Pb ðkzÞ þ S/0 ;kr

Pa ;Pb ð�kzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S/0 ;kr

Pa ;Pa ðkzÞ þ S/0 ;kr
Pa ;Pa ð�kzÞ

h i
S/0 ;kr

Pb ;Pb ðkzÞ þ S/0 ;kr

Pb ;Pb ð�kzÞ
h ir ð61Þ

¼
R S/0 ;kr

Pa ;Pb ðkzÞ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S/0 ;kr

Pa ;Pa ðkzÞS/0 ;kr

Pb ;Pb ðkzÞ
q ð62Þ

where R indicates the real part. As is shown in Supplemental
material Section K, both pFRaCðkrÞ and pFACðkzÞ are real valued
because qðxÞ is real valued. In addition, by the Cauchy-Schwarz
inequality, jp FRaCðkÞj 6 1. Finally, starting with Eq. (62) and using

jR½S/0 ;kr

Pa ;Pb ðkzÞ�j 6 jS/0 ;kr

Pa ;Pb ðkzÞj followed by the Cauchy-Schwarz inequal-

ity, it follows that jpFACðkÞj 6 1. Defining pFACðkzÞ as the sum of terms
at kz and �kz allows it to combine the positive and negative fre-
quencies which have the same interpretation with respect to reso-
lution. In addition, summing the terms makes pFACðkzÞ a function of
jkzj which, like kr , ranges from 0 to 1 while, without the sum of
terms, it would be a function of kz, which ranges from �1 to þ1.
Finally, it is only with the sum of terms that qðxÞ real implies that
pFACðkzÞ is also real (Supplemental material Section K).

For the tail model of Eq. (3), S/0 ;kz

Pa ;Pb ðkrÞ and S/0 ;kr

Pa ;Pb ðkzÞ can be com-
puted symbolically in terms of the ca

l;p;n and cb
l;p;n for the two struc-

tures PaðkÞ and PbðkÞ under the assumption that both structures
share the same values of z0 (Eqs. 4 and 5) and Rþ (Eq. 6). The reason
that the calculations can be done symbolically is the orthogonality
of the factors of Ltðkr ;/

0 ;kzÞ;ðl;p;nÞ (Eq. 11):
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Z 2p

/0¼0
expðiln/0Þ expð�il0n/0Þd/0 ¼ 2pdl;l0 ð63ÞZ 1

kr¼0
Hl;pðkrÞH�l;p0 ðkrÞkrdkr ¼

R2
þ

2
Jjljþ1ðcjlj;pÞ
h i2

dp;p0 ð64ÞZ 1

kz¼�1
Qðkz � n=z0ÞQ �ðkz � n0=z0Þdkz ¼ z0dn;n0 ð65Þ

where Eq. (63) is an elementary integral, Eq. (64) follows from
Supplemental material Eq. 127 since Hl;pðkrÞ 2 R, and Eq. (65) is
Supplemental material Eq. 225. Using these results,

S/0 ;kz

Pa ;Pb ðkrÞ ¼ 2pz0

Xþ1
l¼�1

X1
p¼1

Xþ1
n¼�1

X1
p0¼1

ca
l;p;nðcb

l;p0 ;nÞ
�Hl;pðkrÞHl;p0 ðkrÞ ð66Þ

S/0 ;kr

Pa ;Pb ðkzÞ ¼ 2p
Xþ1

l¼�1

X1
p¼1

Xþ1
n¼�1

Xþ1
n0¼�1

ca
l;p;nðcb

l;p;n0 Þ
�

�
R2
þ

2
Jjljþ1ðcjlj;pÞ
h i2

Qðkz � n=z0ÞQðkz � n0=z0Þ: ð67Þ

As is shown in Supplemental material Section J, Eq. (67) implies that
Eq. (62) can be simplified and that the simplified equation is ra-
tional in kzz0. Taking the limit as kzz0 grows large leads to the result
(Eq. 225) that

lim
kz!1

pFACðkzÞ ¼ P
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where

jl;p¼
: R2
þ

2
Jjljþ1ðcjlj;pÞ
h i2

: ð69Þ
4.4. The connection between estimation error covariance and FAC,
FRaC, and FSC

Let c� denote the vector containing the true cl;p;n coefficients, let
ĉðyÞ denote the vector containing the maximum likelihood esti-
mates of the cl;p;n coefficients from the image data y, and let
HðĉðyÞÞ be the Hessian of the log likelihood evaluated at the max-
imum likelihood estimate of the cl;p;n coefficients. The Hessian can
be computed starting from Doerschuk and Johnson (2000, Eq. 15, p.
1721) by taking partial derivatives of the log likelihood with
respect to two components of the vector containing the cl;p;n coef-
ficients and using the fact that the first derivative of the log likeli-
hood when evaluated at the maximum likelihood estimate is zero
because the estimate is the maximum. The resulting formula is
Prust (2006, Section 3.2, pp. 35–36)

HðĉðyÞÞ ¼
XNv

i¼1

�1
ciðĉ; yiÞ

� �
Diðĉ; yi; kÞ ð70Þ

where it is important to note that HðĉðyÞÞ can be computed in terms
of the c and D variables of Eqs. (35) and (37) so its computation does
not add to the memory footprint or computational cost of the algo-
rithm. Similar to the comment at the end of Section 2.4, these cal-
culations can be generalized to the case where each virion is from
one of a finite number of different classes and the class label for
the virion shown in a particular image is not known (Doerschuk
and Johnson, 2000; Yin et al., 2003) with the interesting result that
the Hessian matrix has a block diagonal structure where each class
corresponds to a different block. From the general theory of Section
4.1, the estimation error ĉðyÞ � c� is Gaussian distributed with mean
0 and covariance �½HðĉðyÞÞ��1. Therefore, if the entire experiment
and computation were repeated many times, the estimates ĉðyðnÞÞ
would be Gaussian distributed with mean c� and covariance
�½HðĉðyÞÞ��1 where n indexes the repetitions. If the true c� is approx-
imated by the maximum likelihood estimate ĉðyÞ, then the distribu-
tion of ĉðyðnÞÞ is fully specified and sampling from this distribution
is a generalization of the two reconstructions traditionally com-
puted by using even versus odd numbered images.

Suppose there are two structures that are either computed from
different images or are different samples from the distribution of
the previous paragraph. Denote the estimated cl;p;n coefficients by
ĉa and ĉb. From Eqs. (60) and (66) (Eqs. 62 and 67), FRaC (FAC)
can be computed for any value of kr (kz) from ĉa and ĉb. As de-
scribed in Section 4, resolution in FSC is measured as the smallest
value of k for which pFSCðkÞ is below the threshold. Adopting the
same definition for pFRaCðkrÞ and pFACðkzÞ implies that the resolu-
tion, denoted by kr� and kz�, respectively, is defined to be

kr� ¼ min
krP0
fkr : pFRaCðkrÞ < tFRaCðkrÞg ð71Þ

kz� ¼ min
kzP0
fkz : pFACðkzÞ < tFACðkzÞg ð72Þ

where tFRaCðkrÞ ½tFACðkzÞ� is the radial (axial) threshold which is pos-
sibly kr ðkzÞ dependent. Though it is not shown in the notation,
kr� ðkz�Þ is a function of pFRaCðkrÞ ½pFACðkzÞ� which is a function of ĉa

and ĉb. Therefore, kr� and kz� are derived random variables, derived
from ĉa and ĉb.

Because kr� and kz� are derived random variables, their pdfs
can be computed by Monte Carlo. Before starting the iterative
Monte Carlo calculation, it is most efficient to compute the
Cholesky factorization of HðĉðyÞÞ, which is denoted by H1=2 and
which has the property that HðĉðyÞÞ ¼ H1=2ðH1=2ÞT . Each iteration
of Monte Carlo (indexed by the integer t) includes the following
computations:

1. Compute va;vb 2 RNc whose components are independent and
identically distributed Gaussian pseudo random variables with
mean 0 and variance 1 where Nc is the number of cl;p;n

coefficients.
2. Compute ca ¼ H1=2va þ ĉðyÞ and cb ¼ H1=2vb þ ĉðyÞ which are

samples from the Gaussian distribution for the estimates. ca

and cb play the role of the structures computed from even ver-
sus odd numbered images.

3. From Eqs. (60, 66, and 71), compute kr�ðtÞ.
4. From Eqs. (62, 67, and 72), compute kz�ðtÞ.

After T Monte Carlo iterations, an estimate of the pdf for
kr� ðkz�Þ, denoted by pkr� ðkrÞ ½pkz� ðkzÞ�, can be determined by com-
puting the histogram for the set kr�ðtÞ ½kz�ðtÞ� for t 2 f1; . . . ; Tg.
Once a probability p is chosen, e.g., p ¼ :01, the estimates for kr�
and kz�, denoted by k̂r and k̂z, respectively, can be determined as
the values such thatZ k̂r

kr¼0
pkr� ðkrÞdkr ¼ p ð73ÞZ k̂z

kz¼0
pkz� ðkzÞdkz ¼ p: ð74Þ

Alternatively, the same pdfs can be used to compute confidence
intervals. Let �kr ð�kzÞ be the sample mean of kr�ðtÞ ½kz�ðtÞ�, i.e.,

�kr ¼
1
T

XT

t¼0

kr�ðtÞ ð75Þ

�kz ¼
1
T

XT

t¼0

kz�ðtÞ: ð76Þ
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Fig. 9. The distribution of energy in reciprocal space ð0 6 kr ; kz 6 0:08Å
�1Þ for the

highest frequency cl;p;n and corresponding basis function. Both S/0 ;kz

PHF ; PHF ðkrÞ, showing
energy averaged over cylindrical shells as a function of the radius of the shell (solid
curve), and S/0 ;kr

PHF ; PHF ðkzÞ, showing energy averaged over cross sectional planes as a
function of the axial coordinate (dashed curve), are shown.
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Then the symmetric 100q% confidence intervals are ½�kr � dr;
�kr þ dr�

and ½�kz � dz;
�kz þ dz� where dr and dz are defined byZ �krþdr

kr¼�kr�dr

pkr� ðkrÞdkr ¼ q ð77ÞZ �kzþdz

kz¼�kz�dz

pkz� ðkzÞdkz ¼ q; ð78Þ

respectively.
While the equations are not shown here, these ideas can also be

applied to the FSC based on Yin et al. (2003, Eqs. 23 and 25).

5. Numerical results 2: The resolution of the reconstruction of
P22

As described in Section 2.5, the storage footprint of the current
software system is large. Each D matrix requires NcðNc þ 1Þ=2 loca-
tions (where Nc is the number of cl;p;n coefficients used) and the
number of D matrices is the number of abscissas, which is
Ng ¼ 60 since the orientation uncertainty is due to the uncertainty
in which icosahedrally related orientation is present, times the
number of images (denoted by Nv ) since each image has a different
set of Ng ¼ 60 possible orientations. Fitting the D matrices into
memory constrains the number of cl;p;n coefficients Nc and/or the
number of images Nv and the largest calculations reported here
have Nc ¼ 385 (implied by lmax ¼ 2; pmax ¼ 7, and nmax ¼ 5) and
Nv ¼ 276. With so few images, the traditional method of perform-
ing reconstructions with even and with odd numbered images and
then comparing the two 3-D cubes by FSC is not attractive.

Independent of image quality and image number, Nc sets an
upper bound on the resolution that can be achieved. The Nc cl;p;n

coefficients describe a function that is nonzero in a cylinder of length
z0 and radius Rþ. Since the function is constrained to have n-fold rota-
tional symmetry, the function is uniquely defined by its values on
1=n of the cylinder’s volume. Alternatively, the same volume might
be represented by Nc voxels where each voxel measures T � T � T .
Equating the volume measured in voxels and the volume of 1=n of
the cylinder gives NcT3 ¼ pR2

þz0=n which implies that

T ¼ pR2
þz0

nNc

" #1=3

: ð79Þ

The resolution that a model with Nc coefficients is able to represent
when averaged in all directions, independent of the number and qual-
ity of the images, is unlikely to exceed about 2T unless the basis func-
tions used in Eq. (3) much more efficiently represent the electron
scattering intensity function in comparison with voxel basis func-
tions (i.e., basis functions which are 1 in a voxel and 0 outside of the
voxel). For n ¼ 6;Nc ¼ 385;Rþ ¼ 130Å, and z0 ¼ 380Å, the value of T
is T ¼ 20:59Å. Therefore the achieved resolution may be limited by
the value of Nc rather than the number and quality of the images.

A second measure of the upper bound on resolution that is set
by Nc independent of the image quality and image number can
be determined by considering special 3-D structures composed of
just those cl;p;n and corresponding basis functions with the highest
spatial frequencies. In the truncated system used for numerical cal-
culations, that special structure has cl;p;n coefficients defined by

cHF
l;p;n ¼

1; l 2 f�lmaxg;p ¼ pmax; n 2 f�nmaxg
0; otherwise

�
ð80Þ

where ‘‘HF” stands for ‘‘high frequency”. Let PHFðkÞ be the corre-
sponding reciprocal space function. The averaged distribution in
reciprocal space of the energy in the special structure is determined

by S/0 ;kz

PHF ;PHF ðkrÞ (averaged over cylindrical shells) and S/0 ;kr

PHF ;PHF ðkzÞ (aver-

aged over cross sectional planes) and these functions are plotted in
Fig. 9. While the curves oscillate, the curve has permanently
decreased to below 10% of its maximum value by 0:0495Å

�1
for

S/0 ;kz

PHF ;PHF ðkrÞ and by 0:0150Å
�1

for S/0 ;kr

PHF ;PHF ðkzÞ and to below 1% of its

maximum value by 0:0568Å
�1

for S/0 ;kz

PHF ;PHF ðkrÞ and by 0:0226Å
�1

for

S/0 ;kr

PHF ;PHF ðkzÞ. With Nc ¼ 385 (implied by lmax ¼ 2;pmax ¼ 7, and
nmax ¼ 5) the mathematical model cannot achieve higher spatial
resolution than somewhere between the 10% and 1% values of kr

and kz independent of the number and quality of the images used
to determine the values of the cl;p;n coefficients.

Due to the considerations of the previous two paragraphs, the
resolution cannot be above kFRaC¼

: 0:06Å
�1

or kFAC¼
: 0:023Å

�1
for

FRaC or FAC, respectively, and plots are stopped at
k�¼
: maxðkFRaC; kFACÞ ¼ 0:06Å

�1
. Fig. 10 shows 4 realizations of

pFRaCðkrÞ (Eq. 60) and pFACðkzÞ (Eq. 62). The plots of pFACðkzÞ clearly
show the approach of pFACðkzÞ to the asymptotic value as
kzz0 ðz0 ¼ 380ÅÞ grows large as is expected from Eq. (68). It is
apparent that resolution is not limited by the number or quality
of the images, since the curves remain high over the entire range
of 0 to kFRaC or 0 to kFAC for FRaC or FAC, respectively, but rather
is limited by the number of cl;p;n coefficients (i.e., by Nc) that our
current software can accommodate. Therefore, in order to compute
resolutions less than kFRaC and kFAC, it is necessary to choose a strict
threshold in Eqs. (71) and (72). Using T ¼ 1000 Monte Carlo itera-
tions and threshold functions tFRaCðkrÞ ¼ 0:95 (Eq. 71) and
tFACðkzÞ ¼ 0:95 (Eq. 72) the histograms of kr� (Eq. 71) and kz� (Eq.
72) values are shown in Fig. 11. The reason that the kr� histogram
of Fig. 11(a) is bimodal is that the kr value at which pFRaCðkrÞ first
drops below the threshold typically occurs in one of two successive
oscillations of pFRaCðkrÞ where the oscillations are due to the Hl;pðkrÞ
functions (defined in Eq. 13) via Eq. (66) in Eq. (60). Choosing
p ¼ 0:02 in Eqs. (73) and (74) leads to a radial resolution of
k̂r ¼ 0:0301Å

�1
(33.3 Å) and an axial resolution of k̂z ¼ 0:0142Å

�1

(70.6 Å) where both are with probability p ¼ 0:02, that is, the prob-
ability that the resolution is actually less than k̂r ¼ 0:0301Å

�1

(33.3 Å) and k̂z ¼ 0:0142Å
�1

(70.6 Å) is p ¼ 0:02.

6. Discussion

Two connected methodological contributions are presented in
this paper. The first is a maximum likelihood reconstruction
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method for an asymmetric reconstruction of an object of the form
‘‘sphere plus cylinder” where the sphere part has icosahedral sym-
metry, the cylinder part has n-fold rotation symmetry around the
axis of the cylinder, and the axis of the cylinder and a 5-fold axis
of the icosahedron are coincidental. While an icosahedrally sym-
metrized reconstruction of the object is used, in particular, the
method described in this paper is really based on images that are
the difference of the experimental image and the predicted icos-
ahedrally symmetric image, no previous structure for the cylinder
is required. In addition, the rotation angle between the cylindrical
and spherical objects is determined without any assumptions di-
rectly from the data. The second methodological contribution is a
statistical method of measuring resolution that combines standard
Fourier Shell Correlation (FSC) ideas with standard statistical max-
imum likelihood ideas and can measure resolution axially and
radially in a cylindrical object as well as radially in a spherical
object as is done by FSC.

The reconstruction and the resolution methods are used to
study the infectious P22 bacteriophage virion using a subset of
the images used in Lander et al. (2006). Without making any
assumptions at any stage of the reconstruction algorithm, the rota-
tional positioning of the components of the tail are determined rel-
ative to the icosahedral symmetry axes of the capsid as is described
in Fig. 6. The combination of the reconstruction and resolution cal-
culations is important because limitations of the reconstruction
software make a resolution calculation based on reconstructions
from even versus from odd numbered images unattractive and
the methods described here can be applied to reconstructions from
the complete set of images. With a correlation threshold of 0.95,
the resolution in the tail measured radially is greater than
0:0301Å

�1
(33.3Å) and measured axially is greater than

0:0142Å
�1

(70.6Å) both with probability p ¼ 0:02.
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