
Journal of Structural Biology 166 (2009) 95–102
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/locate /y jsbi
Appion: An integrated, database-driven pipeline to facilitate EM image processing

Gabriel C. Lander a, Scott M. Stagg b, Neil R. Voss a, Anchi Cheng a, Denis Fellmann a,
James Pulokas a, Craig Yoshioka a, Christopher Irving a, Anke Mulder a, Pick-Wei Lau a, Dmitry Lyumkis a,
Clinton S. Potter a, Bridget Carragher a,*

a National Resource for Automated Molecular Microscopy, The Scripps Research Institute, CB 129 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
b Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, Florida State University, Tallahasse, FL 32306, USA

a r t i c l e i n f o
Article history:
Received 5 December 2008
Received in revised form 9 January 2009
Accepted 10 January 2009
Available online 19 January 2009

Keywords:
CryoEM
EM
TEM
Single particle analysis
3D reconstruction
Image processing
Automation
Automated CryoEM
CryoEM pipeline
1047-8477/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jsb.2009.01.002

* Corresponding author. Fax: +1 858 784 9090.
E-mail address: bcarr@scripps.edu (B. Carragher).
a b s t r a c t

The use of cryoEM and three-dimensional image reconstruction is becoming increasingly common. Our
vision for this technique is to provide a straightforward manner in which users can proceed from raw
data to a reliable 3D reconstruction through a pipeline that both facilitates management of the processing
steps and makes the results at each step more transparent. Tightly integrated with a relational SQL data-
base, Appion is a modular and transparent pipeline that extends existing software applications and pro-
cedures. The user manages and controls the software modules via web-based forms, and all results are
similarly available using web-based viewers directly linked to the underlying database, enabling even
naive users to quickly deduce the quality of their results. The Appion API was designed with the principle
that applications should be compatible with a broad range of specimens and that libraries and routines
are modular and extensible. Presented here is a description of the design and architecture of the working
Appion pipeline prototype and some results of its use.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The use of cryo-electron microscopy (cryoEM) and three-
dimensional image reconstruction to study and verify macro
molecular complexes is becoming ubiquitous. These techniques
provide researchers with a powerful means by which to investigate
stable molecules at subnanometer resolutions and explore the
dynamics of macromolecules. Recent advances in instrumentation
and processing capabilities, combined with automated data collec-
tion software, facilitate routine collection of large single particle
datasets containing hundreds of thousands of individual particle
images. It is now fairly common for these reconstructions to
achieve subnanometer or near-atomic resolutions, yet it remains
unclear what parameters in the numerous processing and refine-
ment steps have the most influence on achieving the best possible
resolution (Bottcher et al., 1997; Conway et al., 1997; Jiang et al.,
2008; Ludtke et al., 2008; Matadeen et al., 1999; Stagg et al.,
2008; Yu et al., 2008; Zhang et al., 2008; Zhou, 2008). There are a
large number of routines and associated parameters that poten-
tially affect the outcome of a reconstruction, and it is challenging
ll rights reserved.
to systematically explore this parameter space using standard in-
put and output files and flat file management systems.

In conjunction with increasing dataset sizes, there are also
increasingly numerous software packages available for data pro-
cessing (Smith and Carragher, 2008). Most researchers use a vari-
ety of packages to achieve the various steps required to proceed
from raw micrographs to a 3D reconstructed density map. Varia-
tions in file formats, user interfaces, Euler angle conventions and
symmetry axes definitions, however, make transfer of information
from one package to another a tedious and error prone process. At-
tempts to unify some of these packages have been made, combin-
ing libraries and infrastructure to streamline the transfer of data
between routines under a single processing environment but uni-
fying packages are currently not in wide-spread use (Hohn et al.,
2007).

The Leginon software system for automated data acquisition,
developed in our lab (Suloway et al., 2005), tracks and records all
microscope and environmental parameters associated with every
acquired image into a MySQL database (http://www.mysql.com).
This provides a straightforward method for comparing and con-
trasting datasets acquired during different microscope sessions
and also provides assurance that acquisition parameters required
for further data processing are always available and accurate. This
permanent record of the dataset survives changes in lab personnel

http://www.mysql.com
mailto:bcarr@scripps.edu
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi


Table 1
Appion organization.

Project
Description of the biological structure of study and related information, such as

background information, preliminary data, user’s names, funding, biohazards,
etc.

Experiments
A set of data acquired from Leginon microscopy sessions. The user provides a

brief description for the experiment, and the database stores all acquisition
parameters. All experiments are associated with a project

Processing runs
Individual attempts at processing and manipulation of the raw data collected

during an experiment, e.g. particle picking, CTF estimation, reference-free
classification, reconstruction

96 G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102
and is available to anyone authorized to access the data. Part of the
rationale for developing Appion was to provide a similar system for
tracking and recording the subsequent processing steps that result
in a 3D density map. A secondary goal was to facilitate the steps
required for 3D reconstruction and make these as transparent as
possible. Appion is tightly integrated with the Leginon acquisition
system so that preliminary processing and analysis procedures
(e.g. particle picking and contrast transfer function (CTF) estima-
tion) can be launched to run concurrently with data collection,
and subsequent steps (e.g. creating image particle stacks, classifi-
cation, 3D reconstruction) can begin as soon as data collection is
completed. All parameters associated with these processes, as well
as the results arising from them, are stored in the processing
database.

The Appion processing pipeline provides users with the ability
to process EM data in an intuitive and guided fashion. The user is
able to inspect the processed data during every step toward a
reconstruction; data outputs are presented via web pages in a stan-
dardized format to the user for assessment. While an experienced
user of EM software packages will understand how to inspect the
output data of the processing steps, this data can often be distrib-
uted across a large number of files in a variety of formats and re-
quire specialized programs for viewing. For new users, single
particle processing can appear as an arcane art form, involving a
series of ‘‘black box” methods that obscure the data from the end
users. Providing web-based reporting tools that present the output
data in a standardized format makes it more difficult for a user to
ignore problems that might not be obvious in the final outputs but
would show up as anomalies in intermediate data or in the overall
statistical evaluation of the dataset. The standardized output also
makes it easy to compare results of one reconstruction to another.
With the growing popularity of EM as a tool for structural assess-
ment, the Appion processing pipeline makes the associated soft-
ware tools accessible to novice electron microscopists, allowing
transparent data processing and thereby reducing the possibility
of incorrect or misinterpreted reconstructions.

The database that supports Appion has the added benefit of pro-
viding long-term provenance for the data and the reconstructions
that result from it. Stored processing parameters and results enable
new users to follow precisely how raw data was processed in order
to arrive at a given reconstruction. This infrastructure provides
insurance against the loss of knowledge upon the departure of a
lab member and provides a record of all processing parameters
and location of files pertaining to a reconstruction from years past.

A fundamental aspect of the Appion processing pipeline archi-
tecture is its ability to incorporate and integrate new routines,
methods, and software. There are currently a myriad of data pro-
cessing and reconstruction software packages available to the EM
community, and new ones will undoubtedly continue to appear
and evolve (Smith and Carragher, 2008). It is unlikely that a soli-
tary monolithic software package will dominate in the foreseeable
future, so that it is essential that any processing pipeline have the
flexibility to easily incorporate new functions. To this end, the uni-
formity of the underlying MySQL database acts as a translator be-
tween the many different file formats and parameter definitions
extant in the community, allowing for the modular transfer of data
between packages. Such integration of routines from different
packages also allows for side-by-side comparisons of competing
functions maintained by the packages, providing a quantitative
means to assess the strengths and weaknesses of different recon-
struction software.

We present here a working prototype of the Appion pipeline,
describing its design and infrastructure, and some results of its
use in our own laboratory. We begin with a brief overview of the
entire process and then go on to describe some of the details of
the supporting infrastructure. A much more detailed description
of the process of using the pipeline is provided in the Supplemen-
tary material.

2. Overview of Appion infrastructure

The organization of Appion is divided into three layers: projects,
experiments, and processing runs, and is summarized in Table 1.
The first step in the pipeline is to define a project by filling out a
short web-based form. This registers the new project by creating
a new unique entry in the Project database, maintaining a detailed
summary that can be edited or updated by authorized users. All
data acquisition experiments that use Leginon are linked to a pro-
ject, so that users can access and view all the data associated with
any given project using a web-based summary page that queries
the database for all associated experiments (Supplementary
Fig. 1), and subsequent analyses. Users can browse through the col-
lected micrograph images or monitor the image statistics as the
experiment progresses using a set of web-based viewers. Summary
pages provide concise graphical reports on information such as the
drift rate, image statistics, contamination level, environmental
conditions, etc. (Fellmann et al., 2002).

The Appion pipeline allows preliminary processing of the ac-
quired images (e.g. particle picking and CTF estimation) to occur
concurrently with data collection. Access to the Appion processing
web pages is provided by a link from the web-based image viewing
pages (Supplementary Fig. 1D).The main page (Fig. 1) provides a
menu bar listing processing functions that are currently available
to the experiment based on the current status of the analysis. Ini-
tially, the only data associated with a given experiment will be raw
micrographs, so the functions available to the user are limited to
particle picking, CTF estimation, and visual micrograph assess-
ment. When these functions are launched, they process the micro-
graph data as soon as it is registered into the database, and keep
pace with the rate of data collection. The menu of processing func-
tions indicates the number of processes currently running or com-
pleted (Fig. 1). As soon as the results from these initial processing
routines are registered in the database, further options become
available in the menu. For example, particle stack creation be-
comes available after particle picking, and classification and recon-
struction procedures appear after stack creation. At each step users
are able to view the results of a processing routine via a web brow-
ser that presents the outputs in a variety of formats, including out-
put parameters, graphs, images, volume rendering. Our goal is to
provide a transparent and comprehensive presentation of interme-
diate results that encourages and enables critical data assessment
and identification of anomalies that may arise during data
processing.

Once a final 3D reconstruction has been completed, the param-
eters specified during the reconstruction, as well as the results of
all particle classifications, class averages, and three-dimensional



G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102 97
models from each iteration are stored to the database. The resolu-
tion of the reconstruction is calculated using both the conventional
Fourier shell correlation (FSC) method (Harauz and Van Heel,
1986), and the Fourier neighbor correlation method (which we
here refer to as Rmeasure) (Fig. 2) (Sousa and Grigorieff, 2007).
The user then has the option of specifying a 3D reconstructed den-
sity map as an ‘‘exemplar”, which generates a web page that pro-
vides a detailed summary of all of the data collection and
processing steps for that particular reconstruction. The exemplar
page also provides a paragraph of text describing the methods in
a format suitable for inclusion in a journal article (Supplementary
Fig. 4).

3. Appion infrastructure

3.1. Infrastructure overview

Appion, similar to Leginon, has been implemented primarily in
the Python scripting language (http://www.python.org), which is
in increasingly wide use in a range of scientific disciplines. This
powerful language provides cross-platform compatibility and can
be readily learned even by non-programmers. In Appion the main
Fig. 1. AppionWeb-based interface. In the upper left hand section, the project, experim
AppionWeb pages, there is a navigable menu that displays all available reconstructions
Each section of this menu can be expanded or contracted to show or hide the subsec
reconstruction step is shown. The left portion of the form (C) is termed the appionLoop fo
database. The right portion of the form shows the parameters that are specific to the curr
has the option of either directly launching the job to a processing cluster or of requestin
terminal (E).
function of the Python scripts is to provide generic ‘‘wrappers” for a
wide array of existing software packages in use by the EM commu-
nity, thus providing for inter-package compatibility. For example,
functions from SPIDER, EMAN, Frealign, Imagic, FindEM, Xmipp
and Matlab have all been incorporated into the Appion pipeline
by Python wrappers (Frank et al., 1996; Grigorieff, 2007; Ludtke
et al., 1999; Mallick et al., 2005; Roseman, 2003; Scheres et al.,
2008; van Heel et al., 1996). The relative simplicity of the Python
language makes it accessible even to non-programmers, so that
anyone with an interest can incorporate a new software package
into the pipeline.

Fundamental to the Appion pipeline is the underlying database,
which tracks all information and provides the links between dispa-
rate packages. The creation and maintenance of the Appion data-
base is based on an automatically adaptive database structure
that also supports the Leginon and Project databases. The Appion
database is relationally linked to these other databases such that
information can be traced back from every point of processing;
for example, an individual particle contributing to a reconstruction
can be tracked back to its location in a specific image and thus to
every parameter associated with the data acquisition. The Project
database stores global data associated with the overall biological
ent name, description and raw data path is displayed (A). On the left side of all
steps, along with the number of processing jobs that are running or completed (B).
tions. To the right of the menu, a web form pertaining to the currently selected
rm, and is the same for all pages that will perform a function on all the images in the
ent reconstruction step (D). Default values are provided for the parameters. The user
g the text version of the command so that it can be manually launched from a Unix

http://www.python.org


Fig. 2. Reconstruction report page. Overall statistics for every reconstruction stored in the database are displayed on the reconstruction summary page. Selecting one of these
reconstructions links the user to a page displaying the results of each iteration (black box). For every iteration, the parameters for that iteration are available by clicking on the
iteration number (red box). Plots showing the Euler angle distribution and the FSC curve. These plots, as well as most other images and graphs displayed, are thumbnails that
can be displayed at full resolution by clicking on them. Class averages can be viewed by clicking on the ‘‘classes” link (green box) and particles that were used in the
reconstruction vs. those that were rejected can be viewed by clicking on the ‘‘good” and ‘‘bad” links. The user has the option to do some post-processing on the 3D maps (blue
box), e.g. applying a low-pass filter, masks, flipping the handedness, normalizing, and performing an amplitude adjustment.

98 G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102
project, the Leginon database primarily stores information related
to the raw data as it is collected, and the Appion database stores all
the parameters, inputs, and outputs from every processing step.
This consortium of databases provides a complete record of the
workflow from micrograph to reconstruction, and querying this
information provides insight into the results of varying algorithms
and methods used during data collection and processing.

3.2. Database management by Sinedon

The structured query language (SQL) is a powerful open source
relational database management system (RDMS) for the creation
and administration of databases, and remains the standard-bearer
for declarative database languages (http://www.mysql.com). Que-
rying, updating and modifying an SQL database structure, however,
requires knowledge of the SQL language, and manually updating
the entries to support new procedures as they are added to the
pipeline can be a tedious and confusing process, especially as the
size of a database grows. One of the most critical components sup-
porting the Appion infrastructure is the Sinedon software library,
which was created to provide an interface between Appion’s Py-
thon scripts and the Appion SQL database (Fig. 3) and to automat-
ically maintain relational links between tables and columns.

The Sinedon software is designed on the concept of object-rela-
tional mapping (ORM), which provides the ability to transfer data
from object-oriented programming languages to a database sys-
tem, with the added capability of creating new tables if they do
not already exist. The goal of this library is to facilitate the creation
and querying of database tables using a Python script, rather than
through standard SQL commands. Utilizing the Python module
SQLDict, dictionary-like classes describing table structures are de-
fined in Python within a single class named appionData.py, and
when an object of this class is created and filled with values in Py-
thon, the table corresponding to the class is created if it does not
already exist, and the object information is entered as a new row
in the table (Fig. 4). All data are inserted as scalar values, and every
row is unique through the use of primary keys. A timestamp is also
stored for every element inserted into the database. An essential
aspect of Sinedon is its ability to automatically create relational
links between classes. If a class is created that contains within it
an object of a different class, this information is stored in the SQL
database using foreign keys (Fig. 4). Additionally, altering the class

http://www.mysql.com


Fig. 3. Schematic representation of the Appion infrastructure. The Leginon appli-
cation controls the microscope and acquires data interacting with the Leginon
database via the Sinedon library. A set of web-based tools (LeginonWeb) provide a
view of the data stored in the Leginon database. Processing of the acquired data is
controlled form the AppionWeb pages, which launch pyAppion scripts on a cluster,
and store the results into the Appion database via Sinedon.

G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102 99
definition in Python automatically performs updates of the table
structure in the Appion database. Upon the next insertion of an ob-
ject pertaining to this class, the changed structure will be mapped
automatically to the SQL table. Through Sinedon, Appion develop-
ers are not required to write SQL queries, and the Appion database,
which consists of nearly 100 tables (many containing dozens of
columns) and which is constantly being modified and extended
as new procedures are added to the pipeline, does not require
any manual maintenance or specialized expertise.

3.3. The pyAppion library

The major functional component of Appion is a collection of
scripts that control all the available analysis and reconstruction
procedures. These scripts reference the classes defined in appion-
Data.py, defining how data is read from and written to the Appion
database (Fig. 4). Because many of these scripts operate on the ac-
quired images as they are collected during an experiment, we have
created a general module named appionLoop.py, which steps
Fig. 4. The Sinedon library. A Python class is defined in appionData.py, and instantiated
into the database, using relational links, and creating new tables if necessary.
through all existing images in an experiment, and then pauses
and waits for a new image to be entered into the database. Func-
tions such as particle pickers or CTF estimators can be launched
using this module to perform tasks during an experiment, so that
processing of all newly collected images occurs concurrently with
data collection. The Appion Python scripts utilize Python’s ‘‘optpar-
se” module for command-line parsing, type assignment/conver-
sion, and help document generation. The optparse module also
provides for the assignment of default values in the case of an ab-
sent parameter. This supporting library provides a standardized
method with which to develop and run procedures and to store
parameters and results to the SQL database.

3.4. Launching processing jobs via AppionWeb

While the Appion Python scripts can always be launched from a
command-line setting, all of the major Python scripts required to
perform a single particle reconstruction can also be accessed and
launched from an intuitive web-based graphical user interface
(Fig. 1). This web-based user interface is generated using PHP, a
server-side scripting language for the generation of dynamic web
pages that is capable of reading and writing to the Appion SQL
database (http://www.php.net). These web-based interfaces to
the pipeline provide a graphical means by which to create and
launch the Appion Python scripts but the user also always has
the option to request the corresponding command-line text, which
can be modified and manually submitted. This is especially useful
when prototyping new options. The AppionWeb submission pages
have been standardized, using a template designed specifically to
the Appion structure. An ‘‘appionLoop” template page emulates
the Python appionLoop.py script, such that the user can set up
the process to run through all existing images contained in an
experiment. The user specifies the type of images upon which to
perform the given function (e.g. close vs. far from focus), whether
or not the processing is to run concurrently with data collection,
and if the results should be stored to the database (Fig. 1).

While the appionLoop section of the user interface remains con-
sistent across similar procedures, parameters specific to the se-
lected function appear in a separate section of the user interface.
Whenever appropriate, default parameter values are automatically
provided based on the experimental setup or previous processing
results. Parameter values can also be recalled from earlier process-
ing runs, which is particularly useful when it is desirable to process
two separate datasets in the same way. Hovering the cursor over
in a Python script. Parameters are assigned to the instance of the class, and entered

http://www.php.net


Fig. 5. Creation of image stacks. Users are able to create an image stack from the results of a particle selection routine, filtering the particles by the confidence of the CTF
estimation, the particle correlation (if an automatic particle picker was used), or by defocus limits. Popup documentation is displayed describing the ‘‘box size” parameter. The
resulting stack is summarized online, with an averaged image of all the particles comprising the stack. From this point the user may examine the individual particles within
the stack, center the particles using EMAN’s cenalignint, or create a subset of the stack.

100 G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102
any of the parameter labels on the web page, pops up a documen-
tation window describing the parameter, and may offer some ad-
vice on its usage (see Fig. 5). Every processing run is associated
with a unique job name tracked in the database. Default names
are automatically assigned by the Appion scripts but the user is
free to change the default name to make it more descriptive under
the restriction that two jobs with the same name cannot be sub-
mitted for the same experiment. A series of other sanity checks
are performed before the script is launched, ensuring that all nec-
essary parameters have been assigned values, and that the values
are appropriate for data that will be processed. For many of the
procedures, the user is also offered the option of processing a sin-
gle image from the dataset in order to test the suitability of entered
parameters. A variety of applications for manual assessment and/
or editing of automatically processed data are also available from
the AppionWeb interface.

Upon submission of the web form, the Appion Python command
is sent to a queue on a local processing cluster, and an entry for
monitoring the job’s status is entered into the database. Upon
the commencement of the script, the job’s status is updated in
the database to reflect this, and the user can track the progress
of the job as it proceeds. In the event of undesired results or an
analysis that is proceeding badly, the user can stop the processing
job, at which point they can return to the web form and make any
necessary changes and resubmit. Stopped jobs can be resubmitted
to continue from the point at which they were previously stopped,
and the number of jobs a user can submit is limited only by the
implemented processing hardware and cluster queuing software.

3.5. Viewing job results via AppionWeb

An extensive set of web tools have been developed to support
the reporting of the processed results to the user. This is the most
critical aspect of the Appion pipeline, as an early mistake in pro-
cessing could otherwise go unnoticed, leading to confusing and
incorrect results later on in the reconstruction process. The soft-
ware that is required to read and parse data from the Appion data-
base and display the results to web pages is primarily written in
PHP. Results are displayed in a variety of ways, either as summa-
ries of the entire process or as individual images, graphs or over-
lays onto existing images. Particle stacks are displayed using a
PHP module capable of reading IMAGIC, SPIDER, and HDF5-format-
ted stack files, and which is modeled on the EMAN ‘‘v2” function
(Fig. 5C) (Ludtke et al., 1999). This same viewer is used to examine
results of reference-free classification, class averages resulting
from a reconstruction, slices of a three-dimensional model, or
any other image stored into a stack file.

4. Results

The Appion prototype is currently in use on a day-to-day basis
by multiple labs at our institute and by users with varying degrees
of EM expertise, including visitors from external institutions. The
pipeline has been used to perform two-dimensional assessment
of structural variability and conformational heterogeneity, and to
reconstruct dozens of three-dimensional structures ranging from
200 kDa complexes to 16 MDa viruses (Lander et al., 2008; Neme-
cek et al., 2008; Stagg et al., 2008). To date, the database stores the
locations of over 20 million selected particles, �1000 particle
stacks (with an average of roughly 15,000 particles per stack),
and �350 reconstructions corresponding to over 100 million parti-
cle classifications. Despite this accumulation of data, queries to the
database are still very fast and the processing results from every
experiment can be readily accessed and examined in detail
through the standardized web reporting pages. Without the orga-
nizational structure maintained by the Appion database, these data
would be difficult to track adequately.

The pipeline is under constant development by a team of
developers with a range of expertise in computing. The codes are
managed using a version control system (svn) (http://subver-
sion.tigris.org) and daily builds of the committed codes takes place
automatically. The Sinedon library and existing examples makes it

http://subversion.tigris.org
http://subversion.tigris.org


G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102 101
straightforward for almost any EM user with a facility for comput-
ers to add new functionality to the Appion pipeline by writing Py-
thon scripts. A somewhat more challenging task is to build the web
pages that provide the graphical user interface and report the re-
sults as this requires knowledge of the PHP language and the abil-
ity to understand direct SQL queries. There are, however, templates
that can be used to generate new web pages and forms.

A detailed description of using the Appion pipeline to recon-
struct a 3D map of GroEL is provided in Supplementary materials,
and a summary of the currently available functions and dependen-
cies are described in Table 2.

5. Discussion

An important aspect regarding the architecture of Appion is that
although it provides a directed manner in which an inexperienced
user can proceed through a reconstruction, experienced users do
not lose any flexibility. The Appion ‘‘pipeline” is not a stringent ser-
ies of steps into which the user is locked, but rather a guide that
provides a rational user interface to a wide variety of processing
and analysis packages and routines. An experienced user, provided
they are familiar with Python, can readily incorporate new meth-
ods into the pipeline and quickly make changes or add features
to existing procedures. Using the Sinedon interface, new tables
and columns automatically populate the database as the user runs
the new scripts.

The value of the database underlying the Appion pipeline is its
ability to both streamline the reconstruction process and integrate
disparate software packages, as well as tracking and managing a
staggering amount of metadata that can be used to assess the influ-
ence of various processing during the course of a reconstruction.
We have begun to use this database infrastructure to probe some
of the potential factors that limit the resolution of 3D maps. Ques-
tions addressing the influence of various factors during data collec-
tion, such as accelerating voltage, electron dose, ice thickness, and
contamination have been explored using GroEL as a test-bed
(Cheng et al., 2006; Stagg et al., 2006, 2008). The pipeline makes
is easy to ensure that each data set is analyzed in precisely the
same manner, and variations within the data can be monitored
throughout the process. We have also investigated the effect of
Table 2
Major functions available in Appion.

Function Description

Particle selection
Template picker Automated template-based partic
DoG picker Automated particle picker based o
Manual picker Manual selection of particles, or e

CTF estimation
ACE Automatic CTF estimation (Fig. 1)
CtfTilt Automatic CTF estimation for tilte

Stack creation
Makestack Creation of boxed particle images,

quality of the CTF estimation and
value. Low/high pass filtering, bin
inversion of density can be applie

Particle alignment
Reference-free classification Particle alignment and classificati

an image stack (Supplementary F
Maximum-likelihood multireference alignment Particle alignment and classificati
Reference-based classification Particle alignment and classificati

3D Reconstruction (Chimera is used to generate density snapshots)
EMAN reconstruction Projection-based matching particl
EMAN/SPIDER reconstruction Projection-based matching particl

analysis for class averaging
Frealign reconstruction Refinement of particle orientation

to determine initial euler angles f
particle number on classification and computation of a three-
dimensional map, and the methods implemented by various pack-
ages to exclude unacceptable particles or class averages from
inclusion in the final map. Using the Appion pipeline it is straight-
forward to launch dozens of single particle refinements, each with
specific reconstruction parameters varied, so as to understand
their effect on the final quality of the density map.

While we have begun initial efforts toward displaying and
analyzing the information that is stored in the database, this is
the area of development that is likely to continue to change most
rapidly. The results pages only provide a subset of the informa-
tion in the database and this is often presented in a format that
does not take full advantage of the available metadata. We also
envision future versions of Appion where the reconstruction pro-
cess could be actively driven based on the current results. For
example, the parameters for the next iteration of the reconstruc-
tion could be modified based on the results of the current step;
particles that are not assigned to stable orientations could be ex-
cluded, or assigned to alternative classification methods; and the
reconstruction could be paused or halted if anomalous data are
detected.

This pipeline, due to the simple web-based design of its inter-
face, provides excellent potential as a teaching device. Although
not currently implemented, it should be possible for students
new to EM to follow tutorials that run in the web browsers along-
side the AppionWeb interface. These tutorials could take a new
student through each step of a reconstruction, demonstrating the
results of properly processed data and problems that might arise.

The current implementation of Appion is tightly integrated with
the Leginon database, but data collection by Leginon is not neces-
sarily a mandatory requirement. Appion requires as input several
microscopic parameters (such as KeV, pixel size, spherical aberra-
tion, nominal defocus) to be associated with every micrograph
for processing. We have written a Python module, ‘‘manualimage-
loader.py”, that allows for data acquired from sources other than
Leginon to be uploaded into a database and from there it can be
processed using Appion. In this manner data acquired utilizing
other packages, e.g. JADAS (Zhang et al., 2009), could be processed
using Appion. Development of a web-based version of this import
module is currently underway.
Package requirement

le picker FindEM
n difference of gaussians Appion
diting of automated particle pickers Appion

Matlab
d datasets (RCT/OTR/tomography) CtfTilt

with ability to filter images based on the
particle filtering based on correlation
ning, phase-flipping, normalization,
d to the particles at this step

EMAN

on by multivariate-statistical analysis of
ig. 2)

SPIDER

on by maximum-likelihood approach XMIPP
on using reference-based analysis SPIDER

e classification for 3d reconstruction EMAN, Rmeasure, Chimera
e classification with correspondence EMAN, SPIDER, Rmeasure, Chimera

s. SPIDER, EMAN, or Frealign can be used
or each particle

[EMAN,SPIDER], Frealign, Chimera



102 G.C. Lander et al. / Journal of Structural Biology 166 (2009) 95–102
Appion is freely available under the Apache Open Source Li-
cense, Version 2.0. Software can be downloaded from http://
www.appion.org.

Acknowledgments

We thank Dr. William Young for providing extensive computa-
tional support in the integration of the Appion pipeline into the
Scripps Garibaldi cluster. We are also grateful to Dr. Arthur Hor-
wichand Dr. Eli Chapman for providing us with the GroEL test spec-
imen. This project was primarily funded by grants from the
National Institutes of Health (NIH) through the National Center
for Research Resources’ P41 program (Grants RR17573 and
RR023093), and additionally by a fellowship from the ARCS foun-
dation (to G.C.L.).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jsb.2009.01.002.

References

Bottcher, B., Wynne, S.A., Crowther, R.A., 1997. Determination of the fold of the core
protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.

Cheng, A., Fellmann, D., Pulokas, J., Potter, C.S., Carragher, B., 2006. Does
contamination buildup limit throughput for automated cryoEM? J. Struct.
Biol. 154, 303–311.

Conway, J.F., Cheng, N., Zlotnick, A., Wingfield, P.T., Stahl, S.J., Steven, A.C., 1997.
Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron
microscopy. Nature 386, 91–94.

Fellmann, D., Pulokas, J., Milligan, R.A., Carragher, B., Potter, C.S., 2002. A relational
database for cryoEM: experience at one year and 50000 images. J. Struct. Biol.
137, 273–282.

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., Leith, A., 1996.
SPIDER and WEB: processing and visualization of images in 3D electron
microscopy and related fields. J. Struct. Biol. 116, 190–199.

Grigorieff, N., 2007. FREALIGN: high-resolution refinement of single particle
structures. J. Struct. Biol. 157, 117–125.

Harauz, G., Van Heel, M., 1986. Exact filters for general geometry three dimensional
reconstruction. Optik 73, 146–156.

Hohn, M., Tang, G., Goodyear, G., Baldwin, P.R., Huang, Z., Penczek, P.A., Yang, C.,
Glaeser, R.M., Adams, P.D., Ludtke, S.J., 2007. SPARX, a new environment for
Cryo-EM image processing. J. Struct. Biol. 157, 47–55.
Jiang, W., Baker, M.L., Jakana, J., Weigele, P.R., King, J., Chiu, W., 2008. Backbone
structure of the infectious epsilon15 virus capsid revealed by electron
cryomicroscopy. Nature 451, 1130–1134.

Lander, G.C., Evilevitch, A., Jeembaeva, M., Potter, C.S., Carragher, B., Johnson, J.E.,
2008. Bacteriophage lambda stabilization by auxiliary protein gpD: timing,
location, and mechanism of attachment determined by cryo-EM. Structure 16,
1399–1406.

Ludtke, S.J., Baldwin, P.R., Chiu, W., 1999. EMAN: semiautomated software for high-
resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97.

Ludtke, S.J., Baker, M.L., Chen, D.H., Song, J.L., Chuang, D.T., Chiu, W., 2008. De novo
backbone trace of GroEL from single particle electron cryomicroscopy. Structure
16, 441–448.

Mallick, S.P., Carragher, B., Potter, C.S., Kriegman, D.J., 2005. ACE: automated CTF
estimation. Ultramicroscopy 104, 8–29.

Matadeen, R., Patwardhan, A., Gowen, B., Orlova, E.V., Pape, T., Cuff, M., Mueller, F.,
Brimacombe, R., van Heel, M., 1999. The Escherichia coli large ribosomal
subunit at 7.5 A resolution. Structure 7, 1575–1583.

Nemecek, D., Lander, G.C., Johnson, J.E., Casjens, S.R., Thomas Jr., G.J., 2008.
Assembly architecture and DNA binding of the bacteriophage P22 terminase
small subunit. J. Mol. Biol. 383, 494–501.

Roseman, A.M., 2003. Particle finding in electron micrographs using a fast local
correlation algorithm. Ultramicroscopy 94, 225–236.

Scheres, S.H., Nunez-Ramirez, R., Sorzano, C.O., Carazo, J.M., Marabini, R., 2008.
Image processing for electron microscopy single-particle analysis using XMIPP.
Nat. Protoc. 3, 977–990.

Smith, R., Carragher, B., 2008. Software tools for molecular microscopy. J. Struct.
Biol. 163, 224–228.

Sousa, D., Grigorieff, N., 2007. Ab initio resolution measurement for single particle
structures. J. Struct. Biol. 157, 201–210.

Stagg, S.M., Lander, G.C., Quispe, J., Voss, N.R., Cheng, A., Bradlow, H., Bradlow, S.,
Carragher, B., Potter, C.S., 2008. A test-bed for optimizing high-resolution single
particle reconstructions. J. Struct. Biol. 163, 29–39.

Stagg, S.M., Lander, G.C., Pulokas, J., Fellmann, D., Cheng, A., Quispe, J.D., Mallick, S.P.,
Avila, R.M., Carragher, B., Potter, C.S., 2006. Automated cryoEM data acquisition
and analysis of 284742 particles of GroEL. J. Struct. Biol. 155, 470–481.

Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter,
C.S., Carragher, B., 2005. Automated molecular microscopy: the new Leginon
system. J. Struct. Biol. 151, 41–60.

van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R., Schatz, M., 1996. A new
generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.

Yu, X., Jin, L., Zhou, Z.H., 2008. 3.88 A structure of cytoplasmic polyhedrosis virus by
cryo-electron microscopy. Nature 453, 415–419.

Zhang, J., Nakamura, N., Shimizu, Y., Liang, N., Liu, X., Jakana, J., Marsh, M.P., Booth,
C.R., Shinkawa, T., Nakata, M., Chiu, W., 2009. JADAS: a customizable automated
data acquisition system and its application to ice-embedded single particles. J.
Struct. Biol. 165, 1–9.

Zhang, X., Settembre, E., Xu, C., Dormitzer, P.R., Bellamy, R., Harrison, S.C., Grigorieff,
N., 2008. Near-atomic resolution using electron cryomicroscopy and single-
particle reconstruction. Proc. Natl. Acad. Sci. USA 105, 1867–1872.

Zhou, Z.H., 2008. Towards atomic resolution structural determination by single-
particle cryo-electron microscopy. Curr. Opin. Struct. Biol. 18, 218–228.

http://www.appion.org
http://www.appion.org
http://dx.doi.org/10.1016/j.jsb.2009.01.002

	Appion: An integrated, database-driven pipeline to facilitate EM image processing
	Introduction
	Overview of Appion infrastructure
	Appion infrastructure
	Infrastructure overview
	Database management by Sinedon
	The pyAppion library
	Launching processing jobs via AppionWeb
	Viewing job results via AppionWeb

	Results
	Discussion
	Acknowledgments
	Supplementary data
	References


